%0 Journal Article
%A Andreev, V.
%A Arratia, M.
%A Baghdasaryan, A.
%A Baty, A.
%A Begzsuren, K.
%A Bolz, A.
%A Boudry, V.
%A Brandt, G.
%A Britzger, D.
%A Buniatyan, A.
%A Bystritskaya, L.
%A Campbell, A. J.
%A Cantun Avila, K. B.
%A Cerny, K.
%A Chekelian, V.
%A Chen, Z.
%A Contreras, J. G.
%A Cvach, J.
%A Dainton, J. B.
%A Daum, K.
%A Deshpande, A.
%A Diaconu, C.
%A Drees, A.
%A Eckerlin, G.
%A Egli, S.
%A Elsen, E.
%A Favart, L.
%A Fedotov, A.
%A Feltesse, J.
%A Fleischer, M.
%A Fomenko, A.
%A Gal, C.
%A Gayler, J.
%A Goerlich, L.
%A Gogitidze, N.
%A Gouzevitch, M.
%A Grab, C.
%A Greenshaw, T.
%A Grindhammer, G.
%A Haidt, D.
%A Henderson, R. C. W.
%A Hessler, J.
%A Hladký, J.
%A Hoffmann, D.
%A Horisberger, R.
%A Hreus, T.
%A Huber, F.
%A Jacobs, P. M.
%A Jacquet, M.
%A Janssen, T.
%A Jung, A. W.
%A Katzy, J.
%A Kiesling, C.
%A Klein, M.
%A Kleinwort, C.
%A Klest, H. T.
%A Kluth, S.
%A Kogler, R.
%A Kostka, P.
%A Kretzschmar, J.
%A Krücker, D.
%A Krüger, K.
%A Landon, M. P. J.
%A Lange, W.
%A Laycock, P.
%A Lee, S. H.
%A Levonian, S.
%A Li, W.
%A Lin, J.
%A Lipka, K.
%A List, B.
%A List, J.
%A Lobodzinski, B.
%A Long, O. R.
%A Malinovski, E.
%A Martyn, H.-U.
%A Maxfield, S. J.
%A Mehta, A.
%A Meyer, A. B.
%A Meyer, J.
%A Mikocki, S.
%A Mikuni, V. M.
%A Mondal, M. M.
%A Müller, K.
%A Nachman, B.
%A Naumann, Th.
%A Newman, P. R.
%A Niebuhr, C.
%A Nowak, G.
%A Olsson, J. E.
%A Ozerov, D.
%A Park, S.
%A Pascaud, C.
%A Patel, G. D.
%A Perez, E.
%A Petrukhin, A.
%A Picuric, I.
%A Pitzl, D.
%A Polifka, R.
%A Preins, S.
%A Radescu, V.
%A Raicevic, N.
%A Ravdandorj, T.
%A Reichelt, D.
%A Reimer, P.
%A Rizvi, E.
%A Robmann, P.
%A Roosen, R.
%A Rostovtsev, A.
%A Rotaru, M.
%A Sankey, D. P. C.
%A Sauter, M.
%A Sauvan, E.
%A Schmitt, S.
%A Schmookler, B. A.
%A Schnell, G.
%A Schoeffel, L.
%A Schöning, A.
%A Schumann, S.
%A Sefkow, F.
%A Shushkevich, S.
%A Soloviev, Y.
%A Sopicki, P.
%A South, D.
%A Specka, A.
%A Steder, M.
%A Stella, B.
%A Stöcker, L.
%A Straumann, U.
%A Sun, C.
%A Sykora, T.
%A Thompson, P. D.
%A Acosta, F. Torales
%A Traynor, D.
%A Tseepeldorj, B.
%A Tu, Z.
%A Tustin, G.
%A Valkárová, A.
%A Vallée, C.
%A Van Mechelen, P.
%A Wegener, D.
%A Wünsch, E.
%A Žáček, J.
%A Zhang, J.
%A Zhang, Z.
%A Žlebčík, R.
%A Zohrabyan, H.
%A Zomer, F.
%T Measurement of the 1-jettiness event shape observable in deep-inelastic electron-proton scattering at HERA
%J The European physical journal / C
%V 84
%N 8
%@ 1434-6052
%C Heidelberg
%I Springer
%M PUBDB-2024-01164
%M DESY-24-035
%M arXiv:2403.10109
%P 785
%D 2024
%Z 45 pages, 38 tables, 13 figures
%X The H1 Collaboration reports the first measurement of the 1-jettinessevent shape observable in neutral-current deep-inelasticelectron-proton scattering (DIS). The observable is equivalent to a thrust observable defined in the Breit frame.The data sample was collected at the HERA ep collider in the years 2003-2007 with center-of-mass energy of √s=319 GeV, corresponding to an integrated luminosity of 351.1 pb<sup>−1</sup>. Triple differential cross sections are provided as a function of τ<sub>1</sub><sup>b</sup>, event virtuality Q<sup>2</sup>, and inelasticity y, in the kinematic region Q<sup>2</sup> > 150 GeV<sup>2</sup>.Single differential cross section are provided as a function of τ<sub>1</sub><sup>b</sup> in a limited kinematic range.Double differential cross sections are measured, in contrast, integrated over τ<sub>1</sub><sup>b</sup> and represent the inclusive neutral-current DIS cross section measured as a function of Q<sup>2</sup> and y.The data are compared to a variety of predictions and includeclassical and modern Monte Carlo event generators, predictions in fixed-orderperturbative QCD where calculations up to <i>O</i>(α<sub>s</sub><sup>3</sup>) areavailable for τ<sub>1</sub><sup>b</sup> or inclusive DIS, and resummed predictions atnext-to-leading logarithmic accuracy matched to fixed orderpredictions at <i>O</i>(α<sub>s</sub><sup>2</sup>).These comparisons reveal sensitivity of the 1-jettiness observable to QCD partonshower and resummation effects, as well as themodeling of hadronization and fragmentation.Within their range of validity, the fixed-order predictions provide a good description of the data.Monte Carlo event generators are predictive over the full measured rangeand hence their underlying models and parameters can be constrained by comparing to the presented data.
%K electron p: scattering (INSPIRE)
%K electron p: deep inelastic scattering (INSPIRE)
%K deep inelastic scattering: neutral current (INSPIRE)
%K cross section: measured (INSPIRE)
%K quantum chromodynamics: perturbation theory (INSPIRE)
%K parton: showers (INSPIRE)
%K numerical calculations: Monte Carlo (INSPIRE)
%K differential cross section: measured (INSPIRE)
%K momentum transfer dependence (INSPIRE)
%K event shape analysis (INSPIRE)
%K kinematics (INSPIRE)
%K DESY HERA Stor (INSPIRE)
%K H1 (INSPIRE)
%K fragmentation (INSPIRE)
%K sensitivity (INSPIRE)
%K resummation (INSPIRE)
%K thrust (INSPIRE)
%K Breit frame (INSPIRE)
%K hadronization (INSPIRE)
%K data analysis method (INSPIRE)
%K experimental results (INSPIRE)
%K 319 GeV-cms (INSPIRE)
%F PUB:(DE-HGF)16
%9 Journal Article
%U <Go to ISI:>//WOS:001286427500004
%R 10.1140/epjc/s10052-024-13115-8
%U https://bib-pubdb1.desy.de/record/604567