Home > Publications database > Structural basis for subversion of host cell actin cytoskeleton during Salmonella infection > print |
001 | 603155 | ||
005 | 20250715173107.0 | ||
024 | 7 | _ | |a 10.1126/sciadv.adj5777 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-00792 |2 datacite_doi |
024 | 7 | _ | |a altmetric:157337340 |2 altmetric |
024 | 7 | _ | |a pmid:38064550 |2 pmid |
024 | 7 | _ | |a WOS:001184467200006 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4389475373 |
037 | _ | _ | |a PUBDB-2024-00792 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Yuan, Biao |0 P:(DE-H253)PIP1091457 |b 0 |
245 | _ | _ | |a Structural basis for subversion of host cell actin cytoskeleton during Salmonella infection |
260 | _ | _ | |a Washington, DC [u.a.] |c 2023 |b Assoc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1725265410_1107637 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a DFG Fa330/12-3. Part of this work was performed at the Multi-User Cryo-EM Facility at the Centre for Structural Systems Biology, Hamburg, supported by the University of Hamburg and DFG grant numbers (INST 152/772-1, 152/774-1, 152/775-1, 152/776-1, and 152/777-1 FUGG). |
520 | _ | _ | |a Secreted bacterial type III secretion system (T3SS) proteins are essential for successful infection by many human pathogens. Both T3SS translocator SipC and effector SipA are critical for Salmonella infection by subversion of the host cell cytoskeleton, but the precise molecular interplay between them remains unknown. Here, using cryo–electron microscopy, we show that SipA binds along the F-actin grooves with a unique binding pattern. SipA stabilizes F-actin through charged interface residues and appears to prevent inorganic phosphate release through closure of the “back door” of adenosine 5′-triphosphate pocket. We also show that SipC enhances the binding of SipA to F-actin, thus demonstrating that a sequential presence of T3SS proteins in host cells is associated with a sequence of infection events—starting with actin nucleation, filament growth, and stabilization. Together, our data explain the coordinated interplay of a precisely tuned and highly effective mechanism during Salmonella infection and provide a blueprint for interfering with Salmonella effectors acting on actin. |
536 | _ | _ | |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633) |0 G:(DE-HGF)POF4-633 |c POF4-633 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Scholz, Jonas |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Wald, Jiri |0 P:(DE-H253)PIP1083333 |b 2 |
700 | 1 | _ | |a Thünauer, Roland |0 P:(DE-H253)PIP1087856 |b 3 |
700 | 1 | _ | |a Hennell James, Rory |0 P:(DE-H253)PIP1099073 |b 4 |
700 | 1 | _ | |a Ellenberg, Irina |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Windhorst, Sabine |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Faix, Jan |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Marlovits, Thomas |0 P:(DE-H253)PIP1021412 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1126/sciadv.adj5777 |g Vol. 9, no. 49, p. eadj5777 |0 PERI:(DE-600)2810933-8 |n 49 |p eadj5777 |t Science advances |v 9 |y 2023 |x 2375-2548 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/603155/files/sciadv.adj5777.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/603155/files/sciadv.adj5777.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:603155 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 0 |6 P:(DE-H253)PIP1091457 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1091457 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 2 |6 P:(DE-H253)PIP1083333 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1083333 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 3 |6 P:(DE-H253)PIP1087856 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1087856 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 4 |6 P:(DE-H253)PIP1099073 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1099073 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 8 |6 P:(DE-H253)PIP1021412 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1021412 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-633 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Life Sciences – Building Blocks of Life: Structure and Function |x 0 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI ADV : 2022 |d 2023-08-28 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SCI ADV : 2022 |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-09-20T13:50:30Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-09-20T13:50:30Z |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-28 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-28 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-28 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-UKE-TM-20210520 |k CSSB-UKE-TM |l CSSB-UKE-TM |x 0 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-CF-ALFM-20210629 |k CSSB-CF-ALFM |l CSSB-CF-ALFM |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CSSB-UKE-TM-20210520 |
980 | _ | _ | |a I:(DE-H253)CSSB-CF-ALFM-20210629 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|