001     602694
005     20250716133827.0
024 7 _ |a 10.1016/j.nima.2024.169414
|2 doi
024 7 _ |a 0167-5087
|2 ISSN
024 7 _ |a 0168-9002
|2 ISSN
024 7 _ |a 1872-9576
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-00740
|2 datacite_doi
024 7 _ |a arXiv:2402.14524
|2 arXiv
024 7 _ |a WOS:001240608900001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4396625819
037 _ _ |a PUBDB-2024-00740
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2402.14524
|2 arXiv
100 1 _ |a Simancas, A.
|0 P:(DE-H253)PIP1094798
|b 0
|e Corresponding author
111 2 _ |a 13th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors
|g HSTD13
|c Vancouver
|d 2023-12-03 - 2023-12-08
|w Canada
245 _ _ |a Simulations and Performance Studies of a MAPS in 65 nm CMOS Imaging Technology
260 _ _ |a Amsterdam
|c 2024
|b North-Holland Publ. Co.
300 _ _ |a 5
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1725529028_2822533
|2 PUB:(DE-HGF)
520 _ _ |a Monolithic active pixel sensors (MAPS) produced in a 65 nm CMOS imaging technology are being investigated for applications in particle physics. The MAPS design has a small collection electrode characterized by an input capacitance of ~fF, granting a high signal-to-noise ratio and low power consumption. Additionally, the 65 nm CMOS imaging technology brings a reduction in material budget and improved logic density of the readout circuitry, compared to previously studied technologies. Given these features, this technology was chosen by the TANGERINE project to develop the next generation of silicon pixel sensors. The sensor design targets temporal and spatial resolutions compatible with the requirements for a vertex detector at future lepton colliders. Simulations and test-beam characterization of prototypes have been carried out in close collaboration with the CERN EP R&D program and the ALICE ITS3 upgrade. TCAD device simulations using generic doping profiles and Monte Carlo simulations have been used to build an understanding of the technology and predict the performance parameters of the sensor. Prototypes of a 65 nm CMOS MAPS with a small collection electrode have been characterized in laboratory and test-beam facilities by studying their cluster size, charge collection, and efficiency. This work compares simulation results to test-beam data. The experimental results establish this technology as a promising candidate for a vertex detector at future lepton colliders and give valuable information for improving the simulation approach.
536 _ _ |a 622 - Detector Technologies and Systems (POF4-622)
|0 G:(DE-HGF)POF4-622
|c POF4-622
|f POF IV
|x 0
536 _ _ |a AIDAinnova - Advancement and Innovation for Detectors at Accelerators (101004761)
|0 G:(EU-Grant)101004761
|c 101004761
|f H2020-INFRAINNOV-2020-2
|x 1
542 _ _ |i 2024-07-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2024-07-01
|2 Crossref
|u https://www.elsevier.com/legal/tdmrep-license
542 _ _ |i 2024-05-02
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef Conference
693 _ _ |a DESY II
|f DESY: TestBeamline 21
|1 EXP:(DE-H253)DESYII-20150101
|0 EXP:(DE-H253)TestBeamline21-20150101
|6 EXP:(DE-H253)TestBeamline21-20150101
|x 0
700 1 _ |a Braach, Justus
|0 P:(DE-H253)PIP1091551
|b 1
700 1 _ |a Buschmann, E.
|0 P:(DE-H253)PIP1094017
|b 2
700 1 _ |a Chauhan, Ankur
|0 P:(DE-H253)PIP1093241
|b 3
700 1 _ |a Dannheim, D.
|0 P:(DE-H253)PIP1087629
|b 4
700 1 _ |a Del Rio Viera, M.
|0 P:(DE-H253)PIP1098663
|b 5
700 1 _ |a Dort, K.
|0 P:(DE-H253)PIP1083579
|b 6
700 1 _ |a Eckstein, D.
|0 P:(DE-H253)PIP1006053
|b 7
700 1 _ |a Feindt, F.
|0 P:(DE-H253)PIP1019720
|b 8
700 1 _ |a Gregor, I. M.
|0 P:(DE-H253)PIP1004563
|b 9
700 1 _ |a Hansen, Karsten
|0 P:(DE-H253)PIP1003149
|b 10
700 1 _ |a Huth, L.
|0 P:(DE-H253)PIP1024990
|b 11
700 1 _ |a Mendes, L.
|0 P:(DE-H253)PIP1097577
|b 12
700 1 _ |a Mulyanto, B.
|0 P:(DE-H253)PIP1097737
|b 13
700 1 _ |a Rastorguev, D.
|0 P:(DE-H253)PIP1099910
|b 14
700 1 _ |a Reckleben, C.
|0 P:(DE-H253)PIP1001714
|b 15
700 1 _ |a Ruiz Daza, S.
|0 P:(DE-H253)PIP1099054
|b 16
700 1 _ |a Schütze, P.
|0 P:(DE-H253)PIP1019945
|b 17
700 1 _ |a Snoeys, W.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Spannagel, S.
|0 P:(DE-H253)PIP1018940
|b 19
700 1 _ |a Stanitzki, M.
|0 P:(DE-H253)PIP1014417
|b 20
700 1 _ |a Velyka, A.
|0 P:(DE-H253)PIP1021838
|b 21
700 1 _ |a Vignola, G.
|0 P:(DE-H253)PIP1099070
|b 22
700 1 _ |a Wennlöf, H.
|0 P:(DE-H253)PIP1097675
|b 23
700 1 _ |a Schlaadt, Judith
|0 P:(DE-H253)PIP1102373
|b 24
773 1 8 |a 10.1016/j.nima.2024.169414
|b Elsevier BV
|d 2024-07-01
|p 169414
|3 journal-article
|2 Crossref
|t Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
|v 1064
|y 2024
|x 0168-9002
773 _ _ |a 10.1016/j.nima.2024.169414
|g Vol. 1064, p. 169414 -
|0 PERI:(DE-600)1466532-3
|p 169414
|t Nuclear instruments & methods in physics research / Section A
|v 1064
|y 2024
|x 0168-9002
856 4 _ |u https://bib-pubdb1.desy.de/record/602694/files/20240513154709298.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/602694/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/602694/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/602694/files/20240513154709298.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/602694/files/publisher%27s%20fulltext.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/602694/files/publisher%27s%20fulltext.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:602694
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1094798
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1091551
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1094017
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1093241
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1087629
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1098663
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1083579
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1006053
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1019720
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1004563
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1003149
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1024990
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1097577
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1097737
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 14
|6 P:(DE-H253)PIP1099910
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1001714
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 16
|6 P:(DE-H253)PIP1099054
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 17
|6 P:(DE-H253)PIP1019945
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 18
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 19
|6 P:(DE-H253)PIP1018940
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 20
|6 P:(DE-H253)PIP1014417
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 21
|6 P:(DE-H253)PIP1021838
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 22
|6 P:(DE-H253)PIP1099070
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 23
|6 P:(DE-H253)PIP1097675
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 24
|6 P:(DE-H253)PIP1102373
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 24
|6 P:(DE-H253)PIP1102373
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-622
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Detector Technologies and Systems
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL INSTRUM METH A : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-11
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
920 1 _ |0 I:(DE-H253)ATLAS-20120731
|k ATLAS
|l LHC/ATLAS Experiment
|x 0
920 1 _ |0 I:(DE-H253)FTX-20210408
|k FTX
|l Technol. zukünft. Teilchenph. Experim.
|x 1
920 1 _ |0 I:(DE-H253)FHTestBeam-20150203
|k FHTestBeam
|l Detector RD at DESY Test beam
|x 2
920 1 _ |0 I:(DE-H253)FEC-20120731
|k FEC
|l Mikro- und Optoelektronik
|x 3
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a journal
980 _ _ |a I:(DE-H253)ATLAS-20120731
980 _ _ |a I:(DE-H253)FTX-20210408
980 _ _ |a I:(DE-H253)FHTestBeam-20150203
980 _ _ |a I:(DE-H253)FEC-20120731
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |1 European Strategy Group
|y 2020
|2 Crossref
|o European Strategy Group 2020
999 C 5 |y 2024
|2 Crossref
|o 2024
999 C 5 |a 10.1016/j.nima.2022.167025
|1 Wennlöf
|9 -- missing cx lookup --
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res. A
|v 1039
|y 2022
999 C 5 |1 Feindt
|y 2023
|2 Crossref
|o Feindt 2023
999 C 5 |1 Simancas
|y 2022
|2 Crossref
|o Simancas 2022
999 C 5 |y 2020
|2 Crossref
|o 2020
999 C 5 |y 2019
|2 Crossref
|o 2019
999 C 5 |2 Crossref
|u L. Linssen, CERN, Physics and Detectors at CLIC: CLIC Conceptual Design Report, CERN, ISBN: 9789290833727, http://dx.doi.org/10.48550/arXiv.1202.5940.
999 C 5 |a 10.1088/1748-0221/18/01/C01065
|1 Deng
|9 -- missing cx lookup --
|2 Crossref
|t J. Instrum.
|v 18
|y 2023
999 C 5 |1 Carnesecchi
|y 2024
|2 Crossref
|o Carnesecchi 2024
999 C 5 |a 10.1016/j.nima.2013.03.017
|9 -- missing cx lookup --
|1 Senyukov
|p 115 -
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res. A
|v 730
|y 2013
999 C 5 |a 10.1016/j.nima.2017.07.046
|9 -- missing cx lookup --
|1 Snoeys
|p 90 -
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res. A
|v 871
|y 2017
999 C 5 |1 Munker
|y 2018
|2 Crossref
|o Munker 2018
999 C 5 |a 10.1088/1748-0221/14/05/C05013
|1 Munker
|9 -- missing cx lookup --
|2 Crossref
|t J. Instrum.
|v 14
|y 2019
999 C 5 |1 Snoeys
|y 2022
|2 Crossref
|o Snoeys 2022
999 C 5 |a 10.1088/1748-0221/12/01/P01008
|1 Liu
|9 -- missing cx lookup --
|2 Crossref
|t J. Instrum.
|v 12
|y 2017
999 C 5 |1 Vanat
|y 2020
|2 Crossref
|o Vanat 2020
999 C 5 |1 Jansen
|y 2016
|2 Crossref
|o Jansen 2016
999 C 5 |1 Huth
|y 2022
|2 Crossref
|o Huth 2022
999 C 5 |a 10.1088/1748-0221/14/09/P09019
|1 Baesso
|9 -- missing cx lookup --
|2 Crossref
|t J. Instrum.
|v 14
|y 2019
999 C 5 |a 10.1088/1748-0221/14/10/P10033
|1 Liu
|9 -- missing cx lookup --
|2 Crossref
|t J. Instrum.
|v 14
|y 2019
999 C 5 |a 10.1088/1748-0221/16/03/P03008
|9 -- missing cx lookup --
|1 Dannheim
|p P03008 -
|2 Crossref
|t J. Instrum.
|v 16
|y 2021
999 C 5 |a 10.1016/j.nima.2018.11.133
|9 -- missing cx lookup --
|1 Diener
|p 265 -
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res. A
|v 922
|y 2019
999 C 5 |2 Crossref
|u C. Kleinwort, General Broken Lines - GitLab. URL https://gitlab.desy.de/claus.kleinwort/general-broken-lines.
999 C 5 |a 10.1016/j.nima.2020.163784
|1 Dannheim
|9 -- missing cx lookup --
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res. A
|v 964
|y 2020
999 C 5 |a 10.1016/j.nima.2018.06.020
|9 -- missing cx lookup --
|1 Spannagel
|p 164 -
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res. A
|v 901
|y 2018


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21