Home > Publications database > Simulations and Performance Studies of a MAPS in 65 nm CMOS Imaging Technology > print |
001 | 602694 | ||
005 | 20250716133827.0 | ||
024 | 7 | _ | |a 10.1016/j.nima.2024.169414 |2 doi |
024 | 7 | _ | |a 0167-5087 |2 ISSN |
024 | 7 | _ | |a 0168-9002 |2 ISSN |
024 | 7 | _ | |a 1872-9576 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-00740 |2 datacite_doi |
024 | 7 | _ | |a arXiv:2402.14524 |2 arXiv |
024 | 7 | _ | |a WOS:001240608900001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4396625819 |
037 | _ | _ | |a PUBDB-2024-00740 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | _ | _ | |a arXiv:2402.14524 |2 arXiv |
100 | 1 | _ | |a Simancas, A. |0 P:(DE-H253)PIP1094798 |b 0 |e Corresponding author |
111 | 2 | _ | |a 13th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors |g HSTD13 |c Vancouver |d 2023-12-03 - 2023-12-08 |w Canada |
245 | _ | _ | |a Simulations and Performance Studies of a MAPS in 65 nm CMOS Imaging Technology |
260 | _ | _ | |a Amsterdam |c 2024 |b North-Holland Publ. Co. |
300 | _ | _ | |a 5 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |m journal |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1725529028_2822533 |2 PUB:(DE-HGF) |
520 | _ | _ | |a Monolithic active pixel sensors (MAPS) produced in a 65 nm CMOS imaging technology are being investigated for applications in particle physics. The MAPS design has a small collection electrode characterized by an input capacitance of ~fF, granting a high signal-to-noise ratio and low power consumption. Additionally, the 65 nm CMOS imaging technology brings a reduction in material budget and improved logic density of the readout circuitry, compared to previously studied technologies. Given these features, this technology was chosen by the TANGERINE project to develop the next generation of silicon pixel sensors. The sensor design targets temporal and spatial resolutions compatible with the requirements for a vertex detector at future lepton colliders. Simulations and test-beam characterization of prototypes have been carried out in close collaboration with the CERN EP R&D program and the ALICE ITS3 upgrade. TCAD device simulations using generic doping profiles and Monte Carlo simulations have been used to build an understanding of the technology and predict the performance parameters of the sensor. Prototypes of a 65 nm CMOS MAPS with a small collection electrode have been characterized in laboratory and test-beam facilities by studying their cluster size, charge collection, and efficiency. This work compares simulation results to test-beam data. The experimental results establish this technology as a promising candidate for a vertex detector at future lepton colliders and give valuable information for improving the simulation approach. |
536 | _ | _ | |a 622 - Detector Technologies and Systems (POF4-622) |0 G:(DE-HGF)POF4-622 |c POF4-622 |f POF IV |x 0 |
536 | _ | _ | |a AIDAinnova - Advancement and Innovation for Detectors at Accelerators (101004761) |0 G:(EU-Grant)101004761 |c 101004761 |f H2020-INFRAINNOV-2020-2 |x 1 |
542 | _ | _ | |i 2024-07-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
542 | _ | _ | |i 2024-07-01 |2 Crossref |u https://www.elsevier.com/legal/tdmrep-license |
542 | _ | _ | |i 2024-05-02 |2 Crossref |u http://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef Conference |
693 | _ | _ | |a DESY II |f DESY: TestBeamline 21 |1 EXP:(DE-H253)DESYII-20150101 |0 EXP:(DE-H253)TestBeamline21-20150101 |6 EXP:(DE-H253)TestBeamline21-20150101 |x 0 |
700 | 1 | _ | |a Braach, Justus |0 P:(DE-H253)PIP1091551 |b 1 |
700 | 1 | _ | |a Buschmann, E. |0 P:(DE-H253)PIP1094017 |b 2 |
700 | 1 | _ | |a Chauhan, Ankur |0 P:(DE-H253)PIP1093241 |b 3 |
700 | 1 | _ | |a Dannheim, D. |0 P:(DE-H253)PIP1087629 |b 4 |
700 | 1 | _ | |a Del Rio Viera, M. |0 P:(DE-H253)PIP1098663 |b 5 |
700 | 1 | _ | |a Dort, K. |0 P:(DE-H253)PIP1083579 |b 6 |
700 | 1 | _ | |a Eckstein, D. |0 P:(DE-H253)PIP1006053 |b 7 |
700 | 1 | _ | |a Feindt, F. |0 P:(DE-H253)PIP1019720 |b 8 |
700 | 1 | _ | |a Gregor, I. M. |0 P:(DE-H253)PIP1004563 |b 9 |
700 | 1 | _ | |a Hansen, Karsten |0 P:(DE-H253)PIP1003149 |b 10 |
700 | 1 | _ | |a Huth, L. |0 P:(DE-H253)PIP1024990 |b 11 |
700 | 1 | _ | |a Mendes, L. |0 P:(DE-H253)PIP1097577 |b 12 |
700 | 1 | _ | |a Mulyanto, B. |0 P:(DE-H253)PIP1097737 |b 13 |
700 | 1 | _ | |a Rastorguev, D. |0 P:(DE-H253)PIP1099910 |b 14 |
700 | 1 | _ | |a Reckleben, C. |0 P:(DE-H253)PIP1001714 |b 15 |
700 | 1 | _ | |a Ruiz Daza, S. |0 P:(DE-H253)PIP1099054 |b 16 |
700 | 1 | _ | |a Schütze, P. |0 P:(DE-H253)PIP1019945 |b 17 |
700 | 1 | _ | |a Snoeys, W. |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Spannagel, S. |0 P:(DE-H253)PIP1018940 |b 19 |
700 | 1 | _ | |a Stanitzki, M. |0 P:(DE-H253)PIP1014417 |b 20 |
700 | 1 | _ | |a Velyka, A. |0 P:(DE-H253)PIP1021838 |b 21 |
700 | 1 | _ | |a Vignola, G. |0 P:(DE-H253)PIP1099070 |b 22 |
700 | 1 | _ | |a Wennlöf, H. |0 P:(DE-H253)PIP1097675 |b 23 |
700 | 1 | _ | |a Schlaadt, Judith |0 P:(DE-H253)PIP1102373 |b 24 |
773 | 1 | 8 | |a 10.1016/j.nima.2024.169414 |b Elsevier BV |d 2024-07-01 |p 169414 |3 journal-article |2 Crossref |t Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |v 1064 |y 2024 |x 0168-9002 |
773 | _ | _ | |a 10.1016/j.nima.2024.169414 |g Vol. 1064, p. 169414 - |0 PERI:(DE-600)1466532-3 |p 169414 |t Nuclear instruments & methods in physics research / Section A |v 1064 |y 2024 |x 0168-9002 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602694/files/20240513154709298.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602694/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602694/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602694/files/20240513154709298.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602694/files/publisher%27s%20fulltext.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602694/files/publisher%27s%20fulltext.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:602694 |p openaire |p open_access |p OpenAPC |p OpenAPC_DEAL |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1094798 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1091551 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1094017 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1093241 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1087629 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1098663 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1083579 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1006053 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1019720 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1004563 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 10 |6 P:(DE-H253)PIP1003149 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1024990 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 12 |6 P:(DE-H253)PIP1097577 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 13 |6 P:(DE-H253)PIP1097737 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 14 |6 P:(DE-H253)PIP1099910 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 15 |6 P:(DE-H253)PIP1001714 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 16 |6 P:(DE-H253)PIP1099054 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 17 |6 P:(DE-H253)PIP1019945 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 18 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 19 |6 P:(DE-H253)PIP1018940 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 20 |6 P:(DE-H253)PIP1014417 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 21 |6 P:(DE-H253)PIP1021838 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 22 |6 P:(DE-H253)PIP1099070 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 23 |6 P:(DE-H253)PIP1097675 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 24 |6 P:(DE-H253)PIP1102373 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 24 |6 P:(DE-H253)PIP1102373 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-622 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Detector Technologies and Systems |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-25 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-11 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-11 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NUCL INSTRUM METH A : 2022 |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-11 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-11 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-11 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Elsevier 09/01/2023 |2 APC |0 PC:(DE-HGF)0125 |
920 | 1 | _ | |0 I:(DE-H253)ATLAS-20120731 |k ATLAS |l LHC/ATLAS Experiment |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FTX-20210408 |k FTX |l Technol. zukünft. Teilchenph. Experim. |x 1 |
920 | 1 | _ | |0 I:(DE-H253)FHTestBeam-20150203 |k FHTestBeam |l Detector RD at DESY Test beam |x 2 |
920 | 1 | _ | |0 I:(DE-H253)FEC-20120731 |k FEC |l Mikro- und Optoelektronik |x 3 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-H253)ATLAS-20120731 |
980 | _ | _ | |a I:(DE-H253)FTX-20210408 |
980 | _ | _ | |a I:(DE-H253)FHTestBeam-20150203 |
980 | _ | _ | |a I:(DE-H253)FEC-20120731 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |1 European Strategy Group |y 2020 |2 Crossref |o European Strategy Group 2020 |
999 | C | 5 | |y 2024 |2 Crossref |o 2024 |
999 | C | 5 | |a 10.1016/j.nima.2022.167025 |1 Wennlöf |9 -- missing cx lookup -- |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 1039 |y 2022 |
999 | C | 5 | |1 Feindt |y 2023 |2 Crossref |o Feindt 2023 |
999 | C | 5 | |1 Simancas |y 2022 |2 Crossref |o Simancas 2022 |
999 | C | 5 | |y 2020 |2 Crossref |o 2020 |
999 | C | 5 | |y 2019 |2 Crossref |o 2019 |
999 | C | 5 | |2 Crossref |u L. Linssen, CERN, Physics and Detectors at CLIC: CLIC Conceptual Design Report, CERN, ISBN: 9789290833727, http://dx.doi.org/10.48550/arXiv.1202.5940. |
999 | C | 5 | |a 10.1088/1748-0221/18/01/C01065 |1 Deng |9 -- missing cx lookup -- |2 Crossref |t J. Instrum. |v 18 |y 2023 |
999 | C | 5 | |1 Carnesecchi |y 2024 |2 Crossref |o Carnesecchi 2024 |
999 | C | 5 | |a 10.1016/j.nima.2013.03.017 |9 -- missing cx lookup -- |1 Senyukov |p 115 - |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 730 |y 2013 |
999 | C | 5 | |a 10.1016/j.nima.2017.07.046 |9 -- missing cx lookup -- |1 Snoeys |p 90 - |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 871 |y 2017 |
999 | C | 5 | |1 Munker |y 2018 |2 Crossref |o Munker 2018 |
999 | C | 5 | |a 10.1088/1748-0221/14/05/C05013 |1 Munker |9 -- missing cx lookup -- |2 Crossref |t J. Instrum. |v 14 |y 2019 |
999 | C | 5 | |1 Snoeys |y 2022 |2 Crossref |o Snoeys 2022 |
999 | C | 5 | |a 10.1088/1748-0221/12/01/P01008 |1 Liu |9 -- missing cx lookup -- |2 Crossref |t J. Instrum. |v 12 |y 2017 |
999 | C | 5 | |1 Vanat |y 2020 |2 Crossref |o Vanat 2020 |
999 | C | 5 | |1 Jansen |y 2016 |2 Crossref |o Jansen 2016 |
999 | C | 5 | |1 Huth |y 2022 |2 Crossref |o Huth 2022 |
999 | C | 5 | |a 10.1088/1748-0221/14/09/P09019 |1 Baesso |9 -- missing cx lookup -- |2 Crossref |t J. Instrum. |v 14 |y 2019 |
999 | C | 5 | |a 10.1088/1748-0221/14/10/P10033 |1 Liu |9 -- missing cx lookup -- |2 Crossref |t J. Instrum. |v 14 |y 2019 |
999 | C | 5 | |a 10.1088/1748-0221/16/03/P03008 |9 -- missing cx lookup -- |1 Dannheim |p P03008 - |2 Crossref |t J. Instrum. |v 16 |y 2021 |
999 | C | 5 | |a 10.1016/j.nima.2018.11.133 |9 -- missing cx lookup -- |1 Diener |p 265 - |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 922 |y 2019 |
999 | C | 5 | |2 Crossref |u C. Kleinwort, General Broken Lines - GitLab. URL https://gitlab.desy.de/claus.kleinwort/general-broken-lines. |
999 | C | 5 | |a 10.1016/j.nima.2020.163784 |1 Dannheim |9 -- missing cx lookup -- |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 964 |y 2020 |
999 | C | 5 | |a 10.1016/j.nima.2018.06.020 |9 -- missing cx lookup -- |1 Spannagel |p 164 - |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 901 |y 2018 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|