Home > Publications database > PickYOLO: Fast deep learning particle detector for annotation of cryo electron tomograms > print |
001 | 596161 | ||
005 | 20250715173001.0 | ||
024 | 7 | _ | |a 10.1016/j.jsb.2023.107990 |2 doi |
024 | 7 | _ | |a 1047-8477 |2 ISSN |
024 | 7 | _ | |a 1095-8657 |2 ISSN |
024 | 7 | _ | |a 37364763 |2 pmid |
024 | 7 | _ | |a WOS:001036383000001 |2 WOS |
024 | 7 | _ | |a 10.3204/PUBDB-2023-06092 |2 datacite_doi |
024 | 7 | _ | |2 openalex |a openalex:W4381952140 |
037 | _ | _ | |a PUBDB-2023-06092 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Genthe, Erik |0 P:(DE-H253)PIP1094649 |b 0 |u desy |
245 | _ | _ | |a PickYOLO: Fast deep learning particle detector for annotation of cryo electron tomograms |
260 | _ | _ | |a San Diego, Calif. |c 2023 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1708440061_1996957 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a ich habe keinen Zugriff auf den Volltext, Daniela Waiting for fulltext |
520 | _ | _ | |a Particle localization (picking) in digital tomograms is a laborious and time-intensive step in cryogenic electron tomography (cryoET) analysis often requiring considerable user involvement, thus becoming a bottleneck for automated cryoET subtomogram averaging (STA) pipelines. In this paper, we introduce a deep learning framework called PickYOLO to tackle this problem. PickYOLO is a super-fast, universal particle detector based on the deep-learning real-time object recognition system YOLO (You Only Look Once), and tested on single particles, filamentous structures, and membrane-embedded particles. After training with the centre coordinates of a few hundred representative particles, the network automatically detects additional particles with high yield and reliability at a rate of 0.24–3.75 s per tomogram. PickYOLO can automatically detect number of particles comparable to those manually selected by experienced microscopists. This makes PickYOLO a valuable tool to substantially reduce the time and manual effort needed to analyse cryoET data for STA, greatly aiding in high-resolution cryoET structure determination. |
536 | _ | _ | |a 623 - Data Management and Analysis (POF4-623) |0 G:(DE-HGF)POF4-623 |c POF4-623 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Miletic, Sean |b 1 |
700 | 1 | _ | |a Tekkali, Indira |0 P:(DE-H253)PIP1099839 |b 2 |u desy |
700 | 1 | _ | |a Hennell James, Rory |0 P:(DE-H253)PIP1099073 |b 3 |
700 | 1 | _ | |a Marlovits, Thomas |0 P:(DE-H253)PIP1021412 |b 4 |e Corresponding author |
700 | 1 | _ | |a Heuser, Philipp |0 P:(DE-H253)PIP1023889 |b 5 |e Corresponding author |u desy |
773 | _ | _ | |a 10.1016/j.jsb.2023.107990 |g Vol. 215, no. 3, p. 107990 - |0 PERI:(DE-600)1469822-5 |n 3 |p 107990 |t Journal of structural biology |v 215 |y 2023 |x 1047-8477 |
856 | 4 | _ | |y Published on 2023-09-03. Available in OpenAccess from 2024-09-03. |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/596161/files/JSB-22-180_R2-3-revision.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/596161/files/Pickyolo-1-s2.0-S1047847723000539-main.pdf |
856 | 4 | _ | |y Published on 2023-09-03. Available in OpenAccess from 2024-09-03. |x pdfa |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/596161/files/JSB-22-180_R2-3-revision.pdf?subformat=pdfa |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/596161/files/Pickyolo-1-s2.0-S1047847723000539-main.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:596161 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1094649 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1099839 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 3 |6 P:(DE-H253)PIP1099073 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1099073 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 4 |6 P:(DE-H253)PIP1021412 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1021412 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1023889 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-623 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Data Management and Analysis |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-10-21 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J STRUCT BIOL : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-21 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-21 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
920 | 1 | _ | |0 I:(DE-H253)IT-20120731 |k IT |l Informationstechnologie |x 0 |
920 | 1 | _ | |0 I:(DE-H253)MSK-20120731 |k MSK |l Strahlkontrollen |x 1 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-UKE-TM-20210520 |k CSSB-UKE-TM |l CSSB-UKE-TM |x 2 |
920 | 1 | _ | |0 I:(DE-H253)FS-CS-20210408 |k FS-CS |l Strukturelle Mikrobiologie CSSB |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)IT-20120731 |
980 | _ | _ | |a I:(DE-H253)MSK-20120731 |
980 | _ | _ | |a I:(DE-H253)CSSB-UKE-TM-20210520 |
980 | _ | _ | |a I:(DE-H253)FS-CS-20210408 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|