001     596137
005     20250724132226.0
024 7 _ |a 10.1039/D2EE03755F
|2 doi
024 7 _ |a 1754-5692
|2 ISSN
024 7 _ |a 1754-5706
|2 ISSN
024 7 _ |a altmetric:144138581
|2 altmetric
024 7 _ |a 10.3204/PUBDB-2023-06068
|2 datacite_doi
024 7 _ |a WOS:000964676500001
|2 WOS
024 7 _ |a openalex:W4352989734
|2 openalex
037 _ _ |a PUBDB-2023-06068
041 _ _ |a English
082 _ _ |a 690
100 1 _ |a Karmakar, Sanchita
|0 0000-0003-2716-0912
|b 0
245 _ _ |a Developing post-modified Ce-MOF as a photocatalyst: a detail mechanistic insight into CO$_2$ reduction toward selective C2 product formation
260 _ _ |a Cambridge
|c 2023
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1698051879_232152
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Visible light-driven C–C bond formation to produce C2-based liquid fuel selectively from CO$_2$ is of great interest and remains a challenging task due to uphill electron transfer kinetics. Herein, we have developed [Ru(bpy)$_2$]$^{2+}$-grafted UiO-66-bpydc Ce-MOFvia post-synthetic modification to harvest visible light based on MLCT $(RU_{d\pi}^{II} \to \pi_{bpy}^*)$ transition. The employment of Ru-grafted Ce-MOF facilitates fast electron transfer due to the vacant low-lying 4f orbital of Ce$^{IV}$, which was realized from ultrafast transient absorption (TA) spectroscopy, XANES, and in situ UV-vis spectroscopy. The synergistic effect of facile electron transfer and concomitant accommodation of two CO$_2$ molecules in the proximal defect-site in Ce$^{IV}$ leads to facile C–C bond formation via COOH* coupling to yield acetic acid. The catalytic assembly produces 1133 μmol g$^{−1}$ of acetic acid with an impressive rate of 128 μmol g$^{−1}$ h$^{−1}$, suppressing the formation of other C1-based carbonaceous products in water (with selectivity 99.5%, apparent quantum yield (AQY) = 0.93%). A detailed DFT calculation has been performed to understand the mechanistic pathway of C–C bond formation, and the generation of different surface-adsorbed intermediates was further supported by in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a INDIA-DESY - INDIA-DESY Collaboration (2020_Join2-INDIA-DESY)
|0 G:(DE-HGF)2020_Join2-INDIA-DESY
|c 2020_Join2-INDIA-DESY
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P64
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P64-20150101
|6 EXP:(DE-H253)P-P64-20150101
|x 0
700 1 _ |a Barman, Soumitra
|0 0000-0002-8193-2816
|b 1
700 1 _ |a Rahimi, Faruk Ahamed
|0 P:(DE-H253)PIP1098320
|b 2
700 1 _ |a Biswas, Sandip
|0 P:(DE-H253)PIP1098281
|b 3
700 1 _ |a Nath, Sukhendu
|0 0000-0001-9976-7719
|b 4
700 1 _ |a Maji, Tapas Kumar
|0 P:(DE-H253)PIP1098153
|b 5
|e Corresponding author
773 _ _ |a 10.1039/D2EE03755F
|g Vol. 16, no. 5, p. 2187 - 2198
|0 PERI:(DE-600)2439879-2
|n 5
|p 2187 - 2198
|t Energy & environmental science
|v 16
|y 2023
|x 1754-5692
856 4 _ |u https://pubs.rsc.org/en/content/articlepdf/2023/ee/d2ee03755f
856 4 _ |u https://bib-pubdb1.desy.de/record/596137/files/Developing%20post-modified%20Ce-MOF%20as%20a.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/596137/files/Revised%20Manuscript.pdf
|y Published on 2023-03-17. Available in OpenAccess from 2024-03-17.
856 4 _ |u https://bib-pubdb1.desy.de/record/596137/files/Developing%20post-modified%20Ce-MOF%20as%20a.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/596137/files/Revised%20Manuscript.pdf?subformat=pdfa
|x pdfa
|y Published on 2023-03-17. Available in OpenAccess from 2024-03-17.
909 C O |o oai:bib-pubdb1.desy.de:596137
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1098320
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1098281
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1098153
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-32
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-32
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG ENVIRON SCI : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b ENERG ENVIRON SCI : 2022
|d 2023-10-25
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21