000593235 001__ 593235
000593235 005__ 20250724132122.0
000593235 0247_ $$2doi$$a10.1021/acsenergylett.3c01396
000593235 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-05335
000593235 0247_ $$2altmetric$$aaltmetric:153401628
000593235 0247_ $$2pmid$$a37705701
000593235 0247_ $$2WOS$$aWOS:001069644800001
000593235 0247_ $$2openalex$$aopenalex:W4386216162
000593235 037__ $$aPUBDB-2023-05335
000593235 041__ $$aEnglish
000593235 082__ $$a333.7
000593235 1001_ $$0P:(DE-H253)PIP1103822$$aErroi, Andrea$$b0
000593235 245__ $$aUltrafast and Radiation-Hard Lead Halide Perovskite Nanocomposite Scintillators
000593235 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2023
000593235 3367_ $$2DRIVER$$aarticle
000593235 3367_ $$2DataCite$$aOutput Types/Journal article
000593235 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1693917533_377223
000593235 3367_ $$2BibTeX$$aARTICLE
000593235 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000593235 3367_ $$00$$2EndNote$$aJournal Article
000593235 520__ $$aThe use of scintillators for the detection of ionizing radiation is a critical aspect in many fields, including medicine, nuclear monitoring, and homeland security. Recently, lead halide perovskite nanocrystals (LHP-NCs) have emerged as promising scintillator materials. However, the difficulty of affordably upscaling synthesis to the multigram level and embedding NCs in optical-grade nanocomposites without compromising their optical properties still limits their widespread use. In addition, fundamental aspects of the scintillation mechanisms are not fully understood, leaving the scientific community without suitable fabrication protocols and rational guidelines for the full exploitation of their potential. In this work, we realize large polyacrylate nanocomposite scintillators based on CsPbBr$_3$ NCs, which are synthesized via a novel room temperature, low waste turbo-emulsification approach, followed by their in situ transformation during the mass polymerization process. The interaction between NCs and polymer chains strengthens the scintillator structure, homogenizes the particle size distribution and passivates NC defects, resulting in nanocomposite prototypes with luminescence efficiency > 90%, exceptional radiation hardness, 4800 ph/MeV scintillation yield even at low NC loading, and ultrafast response time, with over 30% of scintillation occurring in the first 80 ps, promising for fast-time applications in precision medicine and high-energy physics. Ultrafast radioluminescence and optical spectroscopy experiments using pulsed synchrotron light further disambiguate the origin of the scintillation kinetics as the result of charged-exciton and multiexciton recombination formed under ionizing excitation. This highlights the role of nonradiative Auger decay, whose potential impact on fast timing applications we anticipate via a kinetic model.
000593235 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000593235 536__ $$0G:(DE-H253)I-20220297-EC$$aFS-Proposal: I-20220297 EC (I-20220297-EC)$$cI-20220297-EC$$x1
000593235 536__ $$0G:(EU-Grant)101098649$$aUNICORN - Hybrid Nanocomposite Scintillators for Transformational Breakthroughs in Radiation Detection and Neutrino Research (101098649)$$c101098649$$fHORIZON-EIC-2022-PATHFINDEROPEN-01$$x2
000593235 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000593235 693__ $$0EXP:(DE-H253)P-P66-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P66-20150101$$aPETRA III$$fPETRA Beamline P66$$x0
000593235 7001_ $$aMecca, Sara$$b1
000593235 7001_ $$0P:(DE-H253)PIP1103792$$aZaffalon, Matteo L.$$b2
000593235 7001_ $$aFrank, Isabel$$b3
000593235 7001_ $$aCarulli, Francesco$$b4
000593235 7001_ $$0P:(DE-H253)PIP1084680$$aCemmi, Alessia$$b5
000593235 7001_ $$0P:(DE-H253)PIP1095632$$aDi Sarcina, Ilaria$$b6
000593235 7001_ $$aDebellis, Doriana$$b7
000593235 7001_ $$aRossi, Francesca$$b8
000593235 7001_ $$aCova, Francesca$$b9
000593235 7001_ $$00000-0001-7429-1902$$aPauwels, Kristof$$b10
000593235 7001_ $$00000-0002-7777-9820$$aMauri, Michele$$b11
000593235 7001_ $$aPerego, Jacopo$$b12
000593235 7001_ $$aPinchetti, Valerio$$b13
000593235 7001_ $$00000-0002-8396-8951$$aComotti, Angiolina$$b14
000593235 7001_ $$aMeinardi, Francesco$$b15
000593235 7001_ $$0P:(DE-H253)PIP1095899$$aVedda, Anna$$b16
000593235 7001_ $$aAuffray, Etiennette$$b17
000593235 7001_ $$00000-0002-6450-545X$$aBeverina, Luca$$b18
000593235 7001_ $$0P:(DE-H253)PIP1009459$$aBrovelli, Sergio$$b19$$eCorresponding author
000593235 773__ $$0PERI:(DE-600)2864177-2$$a10.1021/acsenergylett.3c01396$$gp. 3883 - 3894$$p3883 - 3894$$tACS energy letters$$v8$$x2380-8195$$y2023
000593235 8564_ $$uhttps://bib-pubdb1.desy.de/record/593235/files/Main.pdf$$yOpenAccess
000593235 8564_ $$uhttps://bib-pubdb1.desy.de/record/593235/files/Supporting.pdf$$yRestricted
000593235 8564_ $$uhttps://bib-pubdb1.desy.de/record/593235/files/Main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000593235 8564_ $$uhttps://bib-pubdb1.desy.de/record/593235/files/Supporting.pdf?subformat=pdfa$$xpdfa$$yRestricted
000593235 909CO $$ooai:bib-pubdb1.desy.de:593235$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000593235 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103822$$aExternal Institute$$b0$$kExtern
000593235 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103792$$aExternal Institute$$b2$$kExtern
000593235 9101_ $$0I:(DE-588b)214094-9$$6P:(DE-H253)PIP1084680$$aIstituto Nazionale di Fisica Nucleare$$b5$$kINFN
000593235 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095632$$aExternal Institute$$b6$$kExtern
000593235 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095899$$aExternal Institute$$b16$$kExtern
000593235 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009459$$aExternal Institute$$b19$$kExtern
000593235 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000593235 9141_ $$y2023
000593235 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000593235 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000593235 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS ENERGY LETT : 2022$$d2023-08-25
000593235 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
000593235 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
000593235 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
000593235 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
000593235 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
000593235 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
000593235 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bACS ENERGY LETT : 2022$$d2023-08-25
000593235 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000593235 980__ $$ajournal
000593235 980__ $$aVDB
000593235 980__ $$aUNRESTRICTED
000593235 980__ $$aI:(DE-H253)HAS-User-20120731
000593235 9801_ $$aFullTexts