UNICORN

Hybrid Nanocomposite Scintillators for Transformational Breakthroughs in Radiation Detection and Neutrino Research

Grant period2023-06-01 - 2027-05-31
Funding bodyEuropean Union
Call numberHORIZON-EIC-2022-PATHFINDEROPEN-01
Grant number101098649
IdentifierG:(EU-Grant)101098649

Note: The goal of UNICORN is to develop unprecedented nanocomposite scintillator (SL) detectors based on engineered nanomaterials for transformative breakthroughs in strategic radiation detection areas spanning homeland security and medicine to industrial, nuclear, and environmental monitoring to cosmology and high energy/particle physics. Today, conventional inorganic SL crystals are prohibitively energy-intensive, fragile, heavy and cannot be produced in large quantities. Organic SLs are, in turn, affordable and scalable, but their low density and light yield reduce energy resolution. These shortcomings preclude progress in application areas of great importance and impose a technological bottleneck to the fundamental study of rare events. The most at risk of all is the study of neutrinoless Double Beta Decay (0νDBD), a so far undetected, rare nuclear process that represents the Holy Grail in particle physics, whose observation would provide long sought-after answers on the origin of the Universe and unlock unexplored scientific territories with unimaginable progress perspectives. UNICORN will tackle this urgent grand challenge by introducing revolutionary nanotechnology-based concepts combining high energy resolution, efficiency, and stability with unmatched mass scalability. The keystone of our disruptive approach are inorganic nanocrystals (NCs) that will be specifically designed to be both the source of 0νDBD and high-performance nano-SLs. The breakthrough will also consist in achieving perfect compatibility with (in)organic hosts to obtain unparalleled ultra-high density optical-grade nanocomposite detectors with maximized light output to be coupled to custom-made light sensors that will embody the archetype of advanced radiation detectors of the future. UNICORN combines world-leading institutions and companies with complementary interdisciplinary competences ensuring the pivotal synergy to reach the project goals and rapidly translate results into economic value.
   

Recent Publications

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;
Atomically precise surface chemistry of zirconium and hafnium metal oxo clusters beyond carboxylate ligands
Chemical science 15(42), 17380-17396 () [10.1039/D4SC03859B]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Ultrafast and Radiation-Hard Lead Halide Perovskite Nanocomposite Scintillators
ACS energy letters 8, 3883 - 3894 () [10.1021/acsenergylett.3c01396]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 


 Record created 2023-08-27, last modified 2023-08-27



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)