001     587022
005     20250715171107.0
024 7 _ |2 doi
|a 10.1038/s41598-023-50467-9
024 7 _ |2 datacite_doi
|a 10.3204/PUBDB-2023-04090
024 7 _ |2 altmetric
|a altmetric:151224807
024 7 _ |2 pmid
|a pmid:38172505
024 7 _ |2 arXiv
|a arXiv:2307.04671
024 7 _ |a WOS:001136583600002
|2 WOS
024 7 _ |2 openalex
|a openalex:W4390561424
037 _ _ |a PUBDB-2023-04090
041 _ _ |a English
082 _ _ |a 600
088 _ _ |2 arXiv
|a arXiv:2307.04671
100 1 _ |0 P:(DE-H253)PIP1086529
|a Kapcia, Konrad
|b 0
|e Corresponding author
245 _ _ |a Ultrafast demagnetization in bulk nickel induced by X-ray photons tuned to Ni $M_3$ and $L_3$ absorption edges
260 _ _ |a [London]
|b Macmillan Publishers Limited, part of Springer Nature
|c 2024
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1715936643_2376942
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
500 _ _ |a 6 pages, 5 figures (10 panels), 1 table, 30 references; pdfRevTeX class; double-column formatting
520 _ _ |a Studies of light-induced demagnetization started with the experiment performed by Beaupaire et al. on Ni. Here, we present theoretical predictions for X-ray induced demagnetization of nickel, with X-ray photon energies tuned to its $M_3$ and $L_3$ absorption edges. We show that the specific feature in the density of states in the d-band of Ni, i.e., a sharp peak located just above the Fermi level, strongly influences the change of the predicted magnetic signal, making it stronger than in the previously studied case of X-ray demagnetized cobalt. It impacts also the value of Curie temperature for Ni. We believe that this finding will inspire dedicated experiments investigating magnetic processes in X-ray irradiated nickel and cobalt.
536 _ _ |0 G:(DE-HGF)POF4-631
|a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|c POF4-631
|f POF IV
|x 0
542 _ _ |i 2024-01-04
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-01-04
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |0 P:(DE-H253)PIP1020328
|a Tkachenko, Victor
|b 1
|e Corresponding author
|u desy
700 1 _ |0 P:(DE-H253)PIP1007809
|a Capotondi, Flavio
|b 2
700 1 _ |0 P:(DE-H253)PIP1026981
|a Lichtenstein, Alexander
|b 3
700 1 _ |0 P:(DE-H253)PIP1007192
|a Molodtsov, Serguei
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Piekarz, Przemysław
|b 5
700 1 _ |0 P:(DE-H253)PIP1003464
|a Ziaja, Beata
|b 6
|e Corresponding author
|u desy
773 1 8 |a 10.1038/s41598-023-50467-9
|b Springer Science and Business Media LLC
|d 2024-01-04
|n 1
|p 473
|3 journal-article
|2 Crossref
|t Scientific Reports
|v 14
|y 2024
|x 2045-2322
773 _ _ |a 10.1038/s41598-023-50467-9
|g Vol. 14, no. 1, p. 473
|0 PERI:(DE-600)2615211-3
|n 1
|p 473
|t Scientific reports
|v 14
|y 2024
|x 2045-2322
856 4 _ |u https://bib-pubdb1.desy.de/record/587022/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/587022/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/587022/files/Scan%2009.01.2024%2C%2015-22-2.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/587022/files/XSPIN-nickel-main-final.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/587022/files/Scan%2009.01.2024%2C%2015-22-2.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/587022/files/s41598-023-50467-9.pdf
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/587022/files/XSPIN-nickel-main-final.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/587022/files/s41598-023-50467-9.pdf?subformat=pdfa
|x pdfa
|y Restricted
|z StatID:(DE-HGF)0599
909 C O |o oai:bib-pubdb1.desy.de:587022
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1086529
|a External Institute
|b 0
|k Extern
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1020328
|a Deutsches Elektronen-Synchrotron
|b 1
|k DESY
910 1 _ |0 I:(DE-588)1043621512
|6 P:(DE-H253)PIP1020328
|a European XFEL
|b 1
|k XFEL.EU
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1007809
|a External Institute
|b 2
|k Extern
910 1 _ |0 I:(DE-588)1043621512
|6 P:(DE-H253)PIP1026981
|a European XFEL
|b 3
|k XFEL.EU
910 1 _ |0 I:(DE-588)1043621512
|6 P:(DE-H253)PIP1007192
|a European XFEL
|b 4
|k XFEL.EU
910 1 _ |0 I:(DE-588b)2008985-5
|6 P:(DE-H253)PIP1003464
|a Deutsches Elektronen-Synchrotron
|b 6
|k DESY
910 1 _ |0 I:(DE-H253)_CFEL-20120731
|6 P:(DE-H253)PIP1003464
|a Centre for Free-Electron Laser Science
|b 6
|k CFEL
910 1 _ |0 I:(DE-588)1043621512
|6 P:(DE-H253)PIP1003464
|a European XFEL
|b 6
|k XFEL.EU
913 1 _ |0 G:(DE-HGF)POF4-631
|1 G:(DE-HGF)POF4-630
|2 G:(DE-HGF)POF4-600
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)FS-CFEL-XM-20210408
|k FS-CFEL-XM
|l Gruppe CFEL-XM
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-CFEL-XM-20210408
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1038/nphoton.2007.76
|9 -- missing cx lookup --
|1 W Ackermann
|p 336 -
|2 Crossref
|u Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336–342. https://doi.org/10.1038/nphoton.2007.76 (2007).
|t Nat. Photon.
|v 1
|y 2007
999 C 5 |a 10.1038/nphoton.2012.233
|9 -- missing cx lookup --
|1 E Allaria
|p 699 -
|2 Crossref
|u Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704. https://doi.org/10.1038/nphoton.2012.233 (2012).
|t Nat. Photon.
|v 6
|y 2012
999 C 5 |a 10.1038/nphoton.2010.176
|9 -- missing cx lookup --
|1 P Emma
|p 641 -
|2 Crossref
|u Emma, P. et al. First lasing and operation of an Ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647. https://doi.org/10.1038/nphoton.2010.176 (2010).
|t Nat. Photon.
|v 4
|y 2010
999 C 5 |a 10.1038/nphoton.2011.178
|9 -- missing cx lookup --
|1 D Pile
|p 456 -
|2 Crossref
|u Pile, D. First light from SACLA. Nat. Photon. 5, 456–457. https://doi.org/10.1038/nphoton.2011.178 (2011).
|t Nat. Photon.
|v 5
|y 2011
999 C 5 |a 10.18429/JACoW-FEL2017-MOC03
|9 -- missing cx lookup --
|2 Crossref
|u Weise, H. & Decking, W. Commissioning and first lasing of the European XFEL. In Proceedings of the 38th International Free Electron Laser Conference FEL2017, Santa Fe 2017 . 9–13 https://doi.org/10.18429/JACoW-FEL2017-MOC03 (2017).
999 C 5 |a 10.1038/s41524-022-00895-4
|9 -- missing cx lookup --
|1 K Kapcia
|p 212 -
|2 Crossref
|u Kapcia, K. et al. Modeling of ultrafast X-ray induced magnetization dynamics in magnetic multilayer systems. npj Comput. Mater. 8, 212. https://doi.org/10.1038/s41524-022-00895-4 (2022).
|t npj Comput. Mater.
|v 8
|y 2022
999 C 5 |a 10.1103/PhysRevB.107.094402
|1 KJ Kapcia
|9 -- missing cx lookup --
|2 Crossref
|u Kapcia, K. J. et al. Electronic processes occurring during ultrafast demagnetization of cobalt triggered by x-ray photons tuned to the Co $${L}_{3}$$ resonance. Phys. Rev. B 107, 094402. https://doi.org/10.1103/PhysRevB.107.094402 (2023).
|t Phys. Rev. B
|v 107
|y 2023
999 C 5 |a 10.1016/B978-0-12-821978-2.00110-0
|9 -- missing cx lookup --
|2 Crossref
|u Kapcia, K. J., Lipp, V., Tkachenko, V. & Ziaja, B. Theoretical analysis of X-ray free-electron-laser experimental data using Monte-Carlo and molecular-dynamics based computational tools. In Comprehensive Computational Chemistry (First Edition) (Yáñez, M. & Boyd, R. J. eds.). Vol. 3. 858–864 https://doi.org/10.1016/B978-0-12-821978-2.00110-0 (Elsevier, 2024).
999 C 5 |a 10.1063/1.4929482
|1 J Meyer
|9 -- missing cx lookup --
|2 Crossref
|u Meyer, J. et al. The spin and orbital contributions to the total magnetic moments of free Fe Co, and Ni clusters. J. Chem. Phys. 143, 104302. https://doi.org/10.1063/1.4929482 (2015).
|t J. Chem. Phys.
|v 143
|y 2015
999 C 5 |a 10.1016/0038-1098(78)91594-6
|9 -- missing cx lookup --
|1 B Chatterjee
|p 1455 -
|2 Crossref
|u Chatterjee, B. Oxidation of iron, cobalt and nickel at the Curie temperature. Solid State Commun. 27, 1455–1458. https://doi.org/10.1016/0038-1098(78)91594-6 (1978).
|t Solid State Commun.
|v 27
|y 1978
999 C 5 |a 10.1103/PhysRevLett.76.4250
|9 -- missing cx lookup --
|1 E Beaurepaire
|p 4250 -
|2 Crossref
|u Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253. https://doi.org/10.1103/PhysRevLett.76.4250 (1996).
|t Phys. Rev. Lett.
|v 76
|y 1996
999 C 5 |a 10.1103/PhysRevLett.85.844
|9 -- missing cx lookup --
|1 B Koopmans
|p 844 -
|2 Crossref
|u Koopmans, B., van Kampen, M., Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: Magnetism or optics?. Phys. Rev. Lett. 85, 844–847. https://doi.org/10.1103/PhysRevLett.85.844 (2000).
|t Phys. Rev. Lett.
|v 85
|y 2000
999 C 5 |a 10.1038/nmat1985
|9 -- missing cx lookup --
|1 C Stamm
|p 740 -
|2 Crossref
|u Stamm, C. et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nat. Mater. 6, 740–743. https://doi.org/10.1038/nmat1985 (2007).
|t Nat. Mater.
|v 6
|y 2007
999 C 5 |a 10.1080/21663831.2023.2210606
|9 -- missing cx lookup --
|1 T Lojewski
|p 655 -
|2 Crossref
|u Lojewski, T. et al. The interplay of local electron correlations and ultrafast spin dynamics in fcc Ni. Mater. Res. Lett. 11, 655–661. https://doi.org/10.1080/21663831.2023.2210606 (2023).
|t Mater. Res. Lett.
|v 11
|y 2023
999 C 5 |a 10.1021/acs.jctc.5b00621
|9 -- missing cx lookup --
|1 K Krieger
|p 4870 -
|2 Crossref
|u Krieger, K., Dewhurst, J. K., Elliott, P., Sharma, S. & Gross, E. K. U. Laser-induced demagnetization at ultrashort time scales: Predictions of TDDFT. J. Chem. Theory Comput. 11, 4870–4874. https://doi.org/10.1021/acs.jctc.5b00621 (2015).
|t J. Chem. Theory Comput.
|v 11
|y 2015
999 C 5 |a 10.1063/4.0000033
|1 B Rösner
|9 -- missing cx lookup --
|2 Crossref
|u Rösner, B. et al. Simultaneous two-color snapshot view on ultrafast charge and spin dynamics in a Fe–Cu–Ni tri-layer. Struct. Dyn. 7, 054302. https://doi.org/10.1063/4.0000033 (2020).
|t Struct. Dyn.
|v 7
|y 2020
999 C 5 |a 10.3390/app11010325
|9 -- missing cx lookup --
|1 M Hennes
|p 325 -
|2 Crossref
|u Hennes, M. et al. Time-resolved XUV absorption spectroscopy and magnetic circular dichroism at the Ni M$$_{2,3}$$-edges. Appl. Sci. 11, 325. https://doi.org/10.3390/app11010325 (2021).
|t Appl. Sci.
|v 11
|y 2021
999 C 5 |a 10.1103/PhysRevB.49.14251
|9 -- missing cx lookup --
|1 G Kresse
|p 14251 -
|2 Crossref
|u Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid–metal–amorphous–semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269. https://doi.org/10.1103/PhysRevB.49.14251 (1994).
|t Phys. Rev. B
|v 49
|y 1994
999 C 5 |a 10.1103/PhysRevB.54.11169
|9 -- missing cx lookup --
|1 G Kresse
|p 11169 -
|2 Crossref
|u Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169 (1996).
|t Phys. Rev. B
|v 54
|y 1996
999 C 5 |a 10.1103/PhysRevB.59.1758
|9 -- missing cx lookup --
|1 G Kresse
|p 1758 -
|2 Crossref
|u Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758 (1999).
|t Phys. Rev. B
|v 59
|y 1999
999 C 5 |a 10.1103/PhysRevB.50.17953
|9 -- missing cx lookup --
|1 PE Blöchl
|p 17953 -
|2 Crossref
|u Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953 (1994).
|t Phys. Rev. B
|v 50
|y 1994
999 C 5 |a 10.1103/PhysRevLett.77.3865
|9 -- missing cx lookup --
|1 JP Perdew
|p 3865 -
|2 Crossref
|u Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865 (1996).
|t Phys. Rev. Lett.
|v 77
|y 1996
999 C 5 |a 10.1103/PhysRevB.13.5188
|9 -- missing cx lookup --
|1 HJ Monkhorst
|p 5188 -
|2 Crossref
|u Monkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188 (1976).
|t Phys. Rev. B
|v 13
|y 1976
999 C 5 |a 10.1063/1.4861214
|1 LS Abdallah
|9 -- missing cx lookup --
|2 Crossref
|u Abdallah, L. S. et al. Optical conductivity of Ni$$_{1-x}$$Pt$$_x$$ alloys ($$0|t AIP Adv.
|v 4
|y 2014
999 C 5 |a 10.1016/j.actamat.2019.06.041
|9 -- missing cx lookup --
|1 W Wang
|p 11 -
|2 Crossref
|u Wang, W. et al. An experimental and theoretical study of duplex fcc+hcp cobalt based entropic alloys. Acta Mater. 176, 11–18. https://doi.org/10.1016/j.actamat.2019.06.041 (2019).
|t Acta Mater.
|v 176
|y 2019
999 C 5 |a 10.1103/PhysRevB.88.224304
|1 N Medvedev
|9 -- missing cx lookup --
|2 Crossref
|u Medvedev, N., Jeschke, H. O. & Ziaja, B. Nonthermal graphitization of diamond induced by a femtosecond x-ray laser pulse. Phys. Rev. B 88, 224304. https://doi.org/10.1103/PhysRevB.88.224304 (2013).
|t Phys. Rev. B
|v 88
|y 2013
999 C 5 |a 10.1051/fopen/2018003
|9 -- missing cx lookup --
|1 N Medvedev
|p 3 -
|2 Crossref
|u Medvedev, N., Tkachenko, V., Lipp, V., Li, Z. & Ziaja, B. Various damage mechanisms in carbon and silicon materials under femtosecond x-ray irradiation. 4open 1, 3. https://doi.org/10.1051/fopen/2018003 (2018).
|t 4open
|v 1
|y 2018
999 C 5 |a 10.1007/978-3-540-30283-4
|9 -- missing cx lookup --
|2 Crossref
|u Stöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics. Springer Series in Solid-State Sciences . https://doi.org/10.1007/978-3-540-30283-4 (Springer, 2006).
999 C 5 |a 10.1103/PhysRevLett.125.127201
|9 -- missing cx lookup --
|1 M Schneider
|p 127201 -
|2 Crossref
|u Schneider, M. et al. Ultrafast demagnetization dominates fluence dependence of magnetic scattering at Co M edges. Phys. Rev. Lett. 125, 127201. https://doi.org/10.1103/PhysRevLett.125.127201 (2020).
|t Phys. Rev. Lett.
|v 125
|y 2020
999 C 5 |a 10.1016/0038-1098(80)91203-X
|9 -- missing cx lookup --
|1 C Olson
|p 849 -
|2 Crossref
|u Olson, C. & Lynch, D. Temperature dependence of the M$$_{2,3}$$ edge in nickel. Solid State Commun. 33, 849–850. https://doi.org/10.1016/0038-1098(80)91203-X (1980).
|t Solid State Commun.
|v 33
|y 1980
999 C 5 |a 10.1039/C9CP03593A
|9 -- missing cx lookup --
|1 PS Miedema
|p 21596 -
|2 Crossref
|u Miedema, P. S., Thielemann-Kühn, N., Calafell, I. A., Schüßler-Langeheine, C. & Beye, M. Strain analysis from M-edge resonant inelastic x-ray scattering of nickel oxide films. Phys. Chem. Chem. Phys. 21, 21596–21602. https://doi.org/10.1039/C9CP03593A (2019).
|t Phys. Chem. Chem. Phys.
|v 21
|y 2019
999 C 5 |a 10.1103/PhysRevB.103.064305
|1 H-T Chang
|9 -- missing cx lookup --
|2 Crossref
|u Chang, H.-T. et al. Electron thermalization and relaxation in laser-heated nickel by few-femtosecond core-level transient absorption spectroscopy. Phys. Rev. B 103, 064305. https://doi.org/10.1103/PhysRevB.103.064305 (2021).
|t Phys. Rev. B
|v 103
|y 2021
999 C 5 |a 10.1016/S0378-7753(01)00624-3
|9 -- missing cx lookup --
|1 Y Uchimoto
|p 326 -
|2 Crossref
|u Uchimoto, Y., Sawada, H. & Yao, T. Changes in electronic structure by Li ion deintercalation in LiNiO$$_2$$ from nickel L-edge and O K-edge XANES. J. Power Sources 97–98, 326–327. https://doi.org/10.1016/S0378-7753(01)00624-3 (2001).
|t J. Power Sources
|v 97–98
|y 2001
999 C 5 |a 10.1209/0295-5075/86/57002
|1 K Carva
|9 -- missing cx lookup --
|2 Crossref
|u Carva, K., Legut, D. & Oppeneer, P. M. Influence of laser-excited electron distributions on the X-ray magnetic circular dichroism spectra: Implications for femtosecond demagnetization in Ni. EPL (Europhys. Lett.) 86, 57002. https://doi.org/10.1209/0295-5075/86/57002 (2009).
|t EPL (Europhys. Lett.)
|v 86
|y 2011
999 C 5 |a 10.1002/xrs.1362
|9 -- missing cx lookup --
|1 Y Ufuktepe
|p 427 -
|2 Crossref
|u Ufuktepe, Y., Akgül, G., Aksoy, F. & Nordlund, D. Thickness and angular dependence of the L-edge X-ray absorption of nickel thin films. X-Ray Spectrom. 40, 427–431. https://doi.org/10.1002/xrs.1362 (2011).
|t X-Ray Spectrom.
|v 40
|y 2011
999 C 5 |a 10.1039/C4DT00308J
|9 -- missing cx lookup --
|1 W Gu
|p 6406 -
|2 Crossref
|u Gu, W., Wang, H. & Wang, K. Nickel. L-edge and K-edge x-ray absorption spectroscopy of non-innocent Ni[S$$_2$$C$$_2$$(CF$$_3$$)$$_2$$]$$_{2}^{n}$$ series ($$n=-2{,}-1{,}0$$): direct probe of nickel fractional oxidation state changes. Dalton Trans. 43, 6406–6413. https://doi.org/10.1039/C4DT00308J (2014).
|t Dalton Trans.
|v 43
|y 2014
999 C 5 |a 10.21203/rs.3.rs-955056/v1
|9 -- missing cx lookup --
|2 Crossref
|u Philippi-Kobs, A. et al. Ultrafast Demagnetization Excited by Extreme Ultraviolet Light from a Free-electron Laser. https://www.researchsquare.com/article/rs-955056/v1 (2021).
999 C 5 |a 10.1016/j.hedp.2017.06.001
|9 -- missing cx lookup --
|1 F Tavella
|p 22 -
|2 Crossref
|u Tavella, F. et al. Soft x-ray induced femtosecond solid-to-solid phase transition. High Energy Dens. Phys. 24, 22–27. https://doi.org/10.1016/j.hedp.2017.06.001 (2017).
|t High Energy Dens. Phys.
|v 24
|y 2017
999 C 5 |a 10.1103/PhysRevLett.126.117403
|1 I Inoue
|9 -- missing cx lookup --
|2 Crossref
|u Inoue, I. et al. Atomic-scale visualization of ultrafast bond breaking in X-ray-excited diamond. Phys. Rev. Lett. 126, 117403. https://doi.org/10.1103/PhysRevLett.126.117403 (2021).
|t Phys. Rev. Lett.
|v 126
|y 2021
999 C 5 |a 10.3390/app11115157
|1 V Tkachenko
|9 -- missing cx lookup --
|2 Crossref
|u Tkachenko, V. et al. Limitations of structural insight into ultrafast melting of solid materials with X-ray diffraction imaging. Appl. Sci.https://doi.org/10.3390/app11115157 (2021).
|t Appl. Sci.
|y 2021
999 C 5 |a 10.1103/PhysRevLett.128.223203
|1 I Inoue
|9 -- missing cx lookup --
|2 Crossref
|u Inoue, I. et al. Delayed onset and directionality of X-ray-induced atomic displacements observed on subatomic length scales. Phys. Rev. Lett. 128, 223203. https://doi.org/10.1103/PhysRevLett.128.223203 (2022).
|t Phys. Rev. Lett.
|v 128
|y 2022
999 C 5 |a 10.1103/PhysRevLett.131.163201
|1 I Inoue
|9 -- missing cx lookup --
|2 Crossref
|u Inoue, I. et al. Femtosecond reduction of atomic scattering factors triggered by intense X-ray pulse. Phys. Rev. Lett. 131, 163201. https://doi.org/10.1103/PhysRevLett.131.163201 (2023).
|t Phys. Rev. Lett.
|v 131
|y 2023


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21