Home > Publications database > Ultrafast demagnetization in bulk nickel induced by X-ray photons tuned to Ni $M_3$ and $L_3$ absorption edges > print |
001 | 587022 | ||
005 | 20250715171107.0 | ||
024 | 7 | _ | |2 doi |a 10.1038/s41598-023-50467-9 |
024 | 7 | _ | |2 datacite_doi |a 10.3204/PUBDB-2023-04090 |
024 | 7 | _ | |2 altmetric |a altmetric:151224807 |
024 | 7 | _ | |2 pmid |a pmid:38172505 |
024 | 7 | _ | |2 arXiv |a arXiv:2307.04671 |
024 | 7 | _ | |a WOS:001136583600002 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4390561424 |
037 | _ | _ | |a PUBDB-2023-04090 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
088 | _ | _ | |2 arXiv |a arXiv:2307.04671 |
100 | 1 | _ | |0 P:(DE-H253)PIP1086529 |a Kapcia, Konrad |b 0 |e Corresponding author |
245 | _ | _ | |a Ultrafast demagnetization in bulk nickel induced by X-ray photons tuned to Ni $M_3$ and $L_3$ absorption edges |
260 | _ | _ | |a [London] |b Macmillan Publishers Limited, part of Springer Nature |c 2024 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1715936643_2376942 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
500 | _ | _ | |a 6 pages, 5 figures (10 panels), 1 table, 30 references; pdfRevTeX class; double-column formatting |
520 | _ | _ | |a Studies of light-induced demagnetization started with the experiment performed by Beaupaire et al. on Ni. Here, we present theoretical predictions for X-ray induced demagnetization of nickel, with X-ray photon energies tuned to its $M_3$ and $L_3$ absorption edges. We show that the specific feature in the density of states in the d-band of Ni, i.e., a sharp peak located just above the Fermi level, strongly influences the change of the predicted magnetic signal, making it stronger than in the previously studied case of X-ray demagnetized cobalt. It impacts also the value of Curie temperature for Ni. We believe that this finding will inspire dedicated experiments investigating magnetic processes in X-ray irradiated nickel and cobalt. |
536 | _ | _ | |0 G:(DE-HGF)POF4-631 |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |c POF4-631 |f POF IV |x 0 |
542 | _ | _ | |i 2024-01-04 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-01-04 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |0 P:(DE-H253)PIP1020328 |a Tkachenko, Victor |b 1 |e Corresponding author |u desy |
700 | 1 | _ | |0 P:(DE-H253)PIP1007809 |a Capotondi, Flavio |b 2 |
700 | 1 | _ | |0 P:(DE-H253)PIP1026981 |a Lichtenstein, Alexander |b 3 |
700 | 1 | _ | |0 P:(DE-H253)PIP1007192 |a Molodtsov, Serguei |b 4 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Piekarz, Przemysław |b 5 |
700 | 1 | _ | |0 P:(DE-H253)PIP1003464 |a Ziaja, Beata |b 6 |e Corresponding author |u desy |
773 | 1 | 8 | |a 10.1038/s41598-023-50467-9 |b Springer Science and Business Media LLC |d 2024-01-04 |n 1 |p 473 |3 journal-article |2 Crossref |t Scientific Reports |v 14 |y 2024 |x 2045-2322 |
773 | _ | _ | |a 10.1038/s41598-023-50467-9 |g Vol. 14, no. 1, p. 473 |0 PERI:(DE-600)2615211-3 |n 1 |p 473 |t Scientific reports |v 14 |y 2024 |x 2045-2322 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/587022/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/587022/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/587022/files/Scan%2009.01.2024%2C%2015-22-2.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/587022/files/XSPIN-nickel-main-final.pdf |y OpenAccess |z StatID:(DE-HGF)0510 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/587022/files/Scan%2009.01.2024%2C%2015-22-2.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/587022/files/s41598-023-50467-9.pdf |y Restricted |z StatID:(DE-HGF)0599 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/587022/files/XSPIN-nickel-main-final.pdf?subformat=pdfa |x pdfa |y OpenAccess |z StatID:(DE-HGF)0510 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/587022/files/s41598-023-50467-9.pdf?subformat=pdfa |x pdfa |y Restricted |z StatID:(DE-HGF)0599 |
909 | C | O | |o oai:bib-pubdb1.desy.de:587022 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-H253)PIP1086529 |a External Institute |b 0 |k Extern |
910 | 1 | _ | |0 I:(DE-588b)2008985-5 |6 P:(DE-H253)PIP1020328 |a Deutsches Elektronen-Synchrotron |b 1 |k DESY |
910 | 1 | _ | |0 I:(DE-588)1043621512 |6 P:(DE-H253)PIP1020328 |a European XFEL |b 1 |k XFEL.EU |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-H253)PIP1007809 |a External Institute |b 2 |k Extern |
910 | 1 | _ | |0 I:(DE-588)1043621512 |6 P:(DE-H253)PIP1026981 |a European XFEL |b 3 |k XFEL.EU |
910 | 1 | _ | |0 I:(DE-588)1043621512 |6 P:(DE-H253)PIP1007192 |a European XFEL |b 4 |k XFEL.EU |
910 | 1 | _ | |0 I:(DE-588b)2008985-5 |6 P:(DE-H253)PIP1003464 |a Deutsches Elektronen-Synchrotron |b 6 |k DESY |
910 | 1 | _ | |0 I:(DE-H253)_CFEL-20120731 |6 P:(DE-H253)PIP1003464 |a Centre for Free-Electron Laser Science |b 6 |k CFEL |
910 | 1 | _ | |0 I:(DE-588)1043621512 |6 P:(DE-H253)PIP1003464 |a European XFEL |b 6 |k XFEL.EU |
913 | 1 | _ | |0 G:(DE-HGF)POF4-631 |1 G:(DE-HGF)POF4-630 |2 G:(DE-HGF)POF4-600 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |v Matter – Dynamics, Mechanisms and Control |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-24 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-24 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | 1 | _ | |0 I:(DE-H253)FS-CFEL-XM-20210408 |k FS-CFEL-XM |l Gruppe CFEL-XM |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-CFEL-XM-20210408 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1038/nphoton.2007.76 |9 -- missing cx lookup -- |1 W Ackermann |p 336 - |2 Crossref |u Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336–342. https://doi.org/10.1038/nphoton.2007.76 (2007). |t Nat. Photon. |v 1 |y 2007 |
999 | C | 5 | |a 10.1038/nphoton.2012.233 |9 -- missing cx lookup -- |1 E Allaria |p 699 - |2 Crossref |u Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704. https://doi.org/10.1038/nphoton.2012.233 (2012). |t Nat. Photon. |v 6 |y 2012 |
999 | C | 5 | |a 10.1038/nphoton.2010.176 |9 -- missing cx lookup -- |1 P Emma |p 641 - |2 Crossref |u Emma, P. et al. First lasing and operation of an Ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647. https://doi.org/10.1038/nphoton.2010.176 (2010). |t Nat. Photon. |v 4 |y 2010 |
999 | C | 5 | |a 10.1038/nphoton.2011.178 |9 -- missing cx lookup -- |1 D Pile |p 456 - |2 Crossref |u Pile, D. First light from SACLA. Nat. Photon. 5, 456–457. https://doi.org/10.1038/nphoton.2011.178 (2011). |t Nat. Photon. |v 5 |y 2011 |
999 | C | 5 | |a 10.18429/JACoW-FEL2017-MOC03 |9 -- missing cx lookup -- |2 Crossref |u Weise, H. & Decking, W. Commissioning and first lasing of the European XFEL. In Proceedings of the 38th International Free Electron Laser Conference FEL2017, Santa Fe 2017 . 9–13 https://doi.org/10.18429/JACoW-FEL2017-MOC03 (2017). |
999 | C | 5 | |a 10.1038/s41524-022-00895-4 |9 -- missing cx lookup -- |1 K Kapcia |p 212 - |2 Crossref |u Kapcia, K. et al. Modeling of ultrafast X-ray induced magnetization dynamics in magnetic multilayer systems. npj Comput. Mater. 8, 212. https://doi.org/10.1038/s41524-022-00895-4 (2022). |t npj Comput. Mater. |v 8 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevB.107.094402 |1 KJ Kapcia |9 -- missing cx lookup -- |2 Crossref |u Kapcia, K. J. et al. Electronic processes occurring during ultrafast demagnetization of cobalt triggered by x-ray photons tuned to the Co $${L}_{3}$$ resonance. Phys. Rev. B 107, 094402. https://doi.org/10.1103/PhysRevB.107.094402 (2023). |t Phys. Rev. B |v 107 |y 2023 |
999 | C | 5 | |a 10.1016/B978-0-12-821978-2.00110-0 |9 -- missing cx lookup -- |2 Crossref |u Kapcia, K. J., Lipp, V., Tkachenko, V. & Ziaja, B. Theoretical analysis of X-ray free-electron-laser experimental data using Monte-Carlo and molecular-dynamics based computational tools. In Comprehensive Computational Chemistry (First Edition) (Yáñez, M. & Boyd, R. J. eds.). Vol. 3. 858–864 https://doi.org/10.1016/B978-0-12-821978-2.00110-0 (Elsevier, 2024). |
999 | C | 5 | |a 10.1063/1.4929482 |1 J Meyer |9 -- missing cx lookup -- |2 Crossref |u Meyer, J. et al. The spin and orbital contributions to the total magnetic moments of free Fe Co, and Ni clusters. J. Chem. Phys. 143, 104302. https://doi.org/10.1063/1.4929482 (2015). |t J. Chem. Phys. |v 143 |y 2015 |
999 | C | 5 | |a 10.1016/0038-1098(78)91594-6 |9 -- missing cx lookup -- |1 B Chatterjee |p 1455 - |2 Crossref |u Chatterjee, B. Oxidation of iron, cobalt and nickel at the Curie temperature. Solid State Commun. 27, 1455–1458. https://doi.org/10.1016/0038-1098(78)91594-6 (1978). |t Solid State Commun. |v 27 |y 1978 |
999 | C | 5 | |a 10.1103/PhysRevLett.76.4250 |9 -- missing cx lookup -- |1 E Beaurepaire |p 4250 - |2 Crossref |u Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253. https://doi.org/10.1103/PhysRevLett.76.4250 (1996). |t Phys. Rev. Lett. |v 76 |y 1996 |
999 | C | 5 | |a 10.1103/PhysRevLett.85.844 |9 -- missing cx lookup -- |1 B Koopmans |p 844 - |2 Crossref |u Koopmans, B., van Kampen, M., Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: Magnetism or optics?. Phys. Rev. Lett. 85, 844–847. https://doi.org/10.1103/PhysRevLett.85.844 (2000). |t Phys. Rev. Lett. |v 85 |y 2000 |
999 | C | 5 | |a 10.1038/nmat1985 |9 -- missing cx lookup -- |1 C Stamm |p 740 - |2 Crossref |u Stamm, C. et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nat. Mater. 6, 740–743. https://doi.org/10.1038/nmat1985 (2007). |t Nat. Mater. |v 6 |y 2007 |
999 | C | 5 | |a 10.1080/21663831.2023.2210606 |9 -- missing cx lookup -- |1 T Lojewski |p 655 - |2 Crossref |u Lojewski, T. et al. The interplay of local electron correlations and ultrafast spin dynamics in fcc Ni. Mater. Res. Lett. 11, 655–661. https://doi.org/10.1080/21663831.2023.2210606 (2023). |t Mater. Res. Lett. |v 11 |y 2023 |
999 | C | 5 | |a 10.1021/acs.jctc.5b00621 |9 -- missing cx lookup -- |1 K Krieger |p 4870 - |2 Crossref |u Krieger, K., Dewhurst, J. K., Elliott, P., Sharma, S. & Gross, E. K. U. Laser-induced demagnetization at ultrashort time scales: Predictions of TDDFT. J. Chem. Theory Comput. 11, 4870–4874. https://doi.org/10.1021/acs.jctc.5b00621 (2015). |t J. Chem. Theory Comput. |v 11 |y 2015 |
999 | C | 5 | |a 10.1063/4.0000033 |1 B Rösner |9 -- missing cx lookup -- |2 Crossref |u Rösner, B. et al. Simultaneous two-color snapshot view on ultrafast charge and spin dynamics in a Fe–Cu–Ni tri-layer. Struct. Dyn. 7, 054302. https://doi.org/10.1063/4.0000033 (2020). |t Struct. Dyn. |v 7 |y 2020 |
999 | C | 5 | |a 10.3390/app11010325 |9 -- missing cx lookup -- |1 M Hennes |p 325 - |2 Crossref |u Hennes, M. et al. Time-resolved XUV absorption spectroscopy and magnetic circular dichroism at the Ni M$$_{2,3}$$-edges. Appl. Sci. 11, 325. https://doi.org/10.3390/app11010325 (2021). |t Appl. Sci. |v 11 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevB.49.14251 |9 -- missing cx lookup -- |1 G Kresse |p 14251 - |2 Crossref |u Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid–metal–amorphous–semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269. https://doi.org/10.1103/PhysRevB.49.14251 (1994). |t Phys. Rev. B |v 49 |y 1994 |
999 | C | 5 | |a 10.1103/PhysRevB.54.11169 |9 -- missing cx lookup -- |1 G Kresse |p 11169 - |2 Crossref |u Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169 (1996). |t Phys. Rev. B |v 54 |y 1996 |
999 | C | 5 | |a 10.1103/PhysRevB.59.1758 |9 -- missing cx lookup -- |1 G Kresse |p 1758 - |2 Crossref |u Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758 (1999). |t Phys. Rev. B |v 59 |y 1999 |
999 | C | 5 | |a 10.1103/PhysRevB.50.17953 |9 -- missing cx lookup -- |1 PE Blöchl |p 17953 - |2 Crossref |u Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953 (1994). |t Phys. Rev. B |v 50 |y 1994 |
999 | C | 5 | |a 10.1103/PhysRevLett.77.3865 |9 -- missing cx lookup -- |1 JP Perdew |p 3865 - |2 Crossref |u Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865 (1996). |t Phys. Rev. Lett. |v 77 |y 1996 |
999 | C | 5 | |a 10.1103/PhysRevB.13.5188 |9 -- missing cx lookup -- |1 HJ Monkhorst |p 5188 - |2 Crossref |u Monkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188 (1976). |t Phys. Rev. B |v 13 |y 1976 |
999 | C | 5 | |a 10.1063/1.4861214 |1 LS Abdallah |9 -- missing cx lookup -- |2 Crossref |u Abdallah, L. S. et al. Optical conductivity of Ni$$_{1-x}$$Pt$$_x$$ alloys ($$0 |v 4 |y 2014 |
999 | C | 5 | |a 10.1016/j.actamat.2019.06.041 |9 -- missing cx lookup -- |1 W Wang |p 11 - |2 Crossref |u Wang, W. et al. An experimental and theoretical study of duplex fcc+hcp cobalt based entropic alloys. Acta Mater. 176, 11–18. https://doi.org/10.1016/j.actamat.2019.06.041 (2019). |t Acta Mater. |v 176 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevB.88.224304 |1 N Medvedev |9 -- missing cx lookup -- |2 Crossref |u Medvedev, N., Jeschke, H. O. & Ziaja, B. Nonthermal graphitization of diamond induced by a femtosecond x-ray laser pulse. Phys. Rev. B 88, 224304. https://doi.org/10.1103/PhysRevB.88.224304 (2013). |t Phys. Rev. B |v 88 |y 2013 |
999 | C | 5 | |a 10.1051/fopen/2018003 |9 -- missing cx lookup -- |1 N Medvedev |p 3 - |2 Crossref |u Medvedev, N., Tkachenko, V., Lipp, V., Li, Z. & Ziaja, B. Various damage mechanisms in carbon and silicon materials under femtosecond x-ray irradiation. 4open 1, 3. https://doi.org/10.1051/fopen/2018003 (2018). |t 4open |v 1 |y 2018 |
999 | C | 5 | |a 10.1007/978-3-540-30283-4 |9 -- missing cx lookup -- |2 Crossref |u Stöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics. Springer Series in Solid-State Sciences . https://doi.org/10.1007/978-3-540-30283-4 (Springer, 2006). |
999 | C | 5 | |a 10.1103/PhysRevLett.125.127201 |9 -- missing cx lookup -- |1 M Schneider |p 127201 - |2 Crossref |u Schneider, M. et al. Ultrafast demagnetization dominates fluence dependence of magnetic scattering at Co M edges. Phys. Rev. Lett. 125, 127201. https://doi.org/10.1103/PhysRevLett.125.127201 (2020). |t Phys. Rev. Lett. |v 125 |y 2020 |
999 | C | 5 | |a 10.1016/0038-1098(80)91203-X |9 -- missing cx lookup -- |1 C Olson |p 849 - |2 Crossref |u Olson, C. & Lynch, D. Temperature dependence of the M$$_{2,3}$$ edge in nickel. Solid State Commun. 33, 849–850. https://doi.org/10.1016/0038-1098(80)91203-X (1980). |t Solid State Commun. |v 33 |y 1980 |
999 | C | 5 | |a 10.1039/C9CP03593A |9 -- missing cx lookup -- |1 PS Miedema |p 21596 - |2 Crossref |u Miedema, P. S., Thielemann-Kühn, N., Calafell, I. A., Schüßler-Langeheine, C. & Beye, M. Strain analysis from M-edge resonant inelastic x-ray scattering of nickel oxide films. Phys. Chem. Chem. Phys. 21, 21596–21602. https://doi.org/10.1039/C9CP03593A (2019). |t Phys. Chem. Chem. Phys. |v 21 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevB.103.064305 |1 H-T Chang |9 -- missing cx lookup -- |2 Crossref |u Chang, H.-T. et al. Electron thermalization and relaxation in laser-heated nickel by few-femtosecond core-level transient absorption spectroscopy. Phys. Rev. B 103, 064305. https://doi.org/10.1103/PhysRevB.103.064305 (2021). |t Phys. Rev. B |v 103 |y 2021 |
999 | C | 5 | |a 10.1016/S0378-7753(01)00624-3 |9 -- missing cx lookup -- |1 Y Uchimoto |p 326 - |2 Crossref |u Uchimoto, Y., Sawada, H. & Yao, T. Changes in electronic structure by Li ion deintercalation in LiNiO$$_2$$ from nickel L-edge and O K-edge XANES. J. Power Sources 97–98, 326–327. https://doi.org/10.1016/S0378-7753(01)00624-3 (2001). |t J. Power Sources |v 97–98 |y 2001 |
999 | C | 5 | |a 10.1209/0295-5075/86/57002 |1 K Carva |9 -- missing cx lookup -- |2 Crossref |u Carva, K., Legut, D. & Oppeneer, P. M. Influence of laser-excited electron distributions on the X-ray magnetic circular dichroism spectra: Implications for femtosecond demagnetization in Ni. EPL (Europhys. Lett.) 86, 57002. https://doi.org/10.1209/0295-5075/86/57002 (2009). |t EPL (Europhys. Lett.) |v 86 |y 2011 |
999 | C | 5 | |a 10.1002/xrs.1362 |9 -- missing cx lookup -- |1 Y Ufuktepe |p 427 - |2 Crossref |u Ufuktepe, Y., Akgül, G., Aksoy, F. & Nordlund, D. Thickness and angular dependence of the L-edge X-ray absorption of nickel thin films. X-Ray Spectrom. 40, 427–431. https://doi.org/10.1002/xrs.1362 (2011). |t X-Ray Spectrom. |v 40 |y 2011 |
999 | C | 5 | |a 10.1039/C4DT00308J |9 -- missing cx lookup -- |1 W Gu |p 6406 - |2 Crossref |u Gu, W., Wang, H. & Wang, K. Nickel. L-edge and K-edge x-ray absorption spectroscopy of non-innocent Ni[S$$_2$$C$$_2$$(CF$$_3$$)$$_2$$]$$_{2}^{n}$$ series ($$n=-2{,}-1{,}0$$): direct probe of nickel fractional oxidation state changes. Dalton Trans. 43, 6406–6413. https://doi.org/10.1039/C4DT00308J (2014). |t Dalton Trans. |v 43 |y 2014 |
999 | C | 5 | |a 10.21203/rs.3.rs-955056/v1 |9 -- missing cx lookup -- |2 Crossref |u Philippi-Kobs, A. et al. Ultrafast Demagnetization Excited by Extreme Ultraviolet Light from a Free-electron Laser. https://www.researchsquare.com/article/rs-955056/v1 (2021). |
999 | C | 5 | |a 10.1016/j.hedp.2017.06.001 |9 -- missing cx lookup -- |1 F Tavella |p 22 - |2 Crossref |u Tavella, F. et al. Soft x-ray induced femtosecond solid-to-solid phase transition. High Energy Dens. Phys. 24, 22–27. https://doi.org/10.1016/j.hedp.2017.06.001 (2017). |t High Energy Dens. Phys. |v 24 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevLett.126.117403 |1 I Inoue |9 -- missing cx lookup -- |2 Crossref |u Inoue, I. et al. Atomic-scale visualization of ultrafast bond breaking in X-ray-excited diamond. Phys. Rev. Lett. 126, 117403. https://doi.org/10.1103/PhysRevLett.126.117403 (2021). |t Phys. Rev. Lett. |v 126 |y 2021 |
999 | C | 5 | |a 10.3390/app11115157 |1 V Tkachenko |9 -- missing cx lookup -- |2 Crossref |u Tkachenko, V. et al. Limitations of structural insight into ultrafast melting of solid materials with X-ray diffraction imaging. Appl. Sci.https://doi.org/10.3390/app11115157 (2021). |t Appl. Sci. |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevLett.128.223203 |1 I Inoue |9 -- missing cx lookup -- |2 Crossref |u Inoue, I. et al. Delayed onset and directionality of X-ray-induced atomic displacements observed on subatomic length scales. Phys. Rev. Lett. 128, 223203. https://doi.org/10.1103/PhysRevLett.128.223203 (2022). |t Phys. Rev. Lett. |v 128 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.131.163201 |1 I Inoue |9 -- missing cx lookup -- |2 Crossref |u Inoue, I. et al. Femtosecond reduction of atomic scattering factors triggered by intense X-ray pulse. Phys. Rev. Lett. 131, 163201. https://doi.org/10.1103/PhysRevLett.131.163201 (2023). |t Phys. Rev. Lett. |v 131 |y 2023 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|