000587022 001__ 587022
000587022 005__ 20250715171107.0
000587022 0247_ $$2doi$$a10.1038/s41598-023-50467-9
000587022 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-04090
000587022 0247_ $$2altmetric$$aaltmetric:151224807
000587022 0247_ $$2pmid$$apmid:38172505
000587022 0247_ $$2arXiv$$aarXiv:2307.04671
000587022 0247_ $$2WOS$$aWOS:001136583600002
000587022 0247_ $$2openalex$$aopenalex:W4390561424
000587022 037__ $$aPUBDB-2023-04090
000587022 041__ $$aEnglish
000587022 088__ $$2arXiv$$aarXiv:2307.04671
000587022 082__ $$a600
000587022 1001_ $$0P:(DE-H253)PIP1086529$$aKapcia, Konrad$$b0$$eCorresponding author
000587022 245__ $$aUltrafast demagnetization in bulk nickel induced by X-ray photons tuned to Ni $M_3$ and $L_3$ absorption edges
000587022 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2024
000587022 3367_ $$2DRIVER$$aarticle
000587022 3367_ $$2DataCite$$aOutput Types/Journal article
000587022 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715936643_2376942
000587022 3367_ $$2BibTeX$$aARTICLE
000587022 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000587022 3367_ $$00$$2EndNote$$aJournal Article
000587022 500__ $$a6 pages, 5 figures (10 panels), 1 table, 30 references; pdfRevTeX class; double-column formatting
000587022 520__ $$aStudies of light-induced demagnetization started with the experiment performed by Beaupaire et al. on Ni. Here, we present theoretical predictions for X-ray induced demagnetization of nickel, with X-ray photon energies tuned to its $M_3$ and $L_3$ absorption edges. We show that the specific feature in the density of states in the d-band of Ni, i.e., a sharp peak located just above the Fermi level, strongly influences the change of the predicted magnetic signal, making it stronger than in the previously studied case of X-ray demagnetized cobalt. It impacts also the value of Curie temperature for Ni. We believe that this finding will inspire dedicated experiments investigating magnetic processes in X-ray irradiated nickel and cobalt.
000587022 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000587022 542__ $$2Crossref$$i2024-01-04$$uhttps://creativecommons.org/licenses/by/4.0
000587022 542__ $$2Crossref$$i2024-01-04$$uhttps://creativecommons.org/licenses/by/4.0
000587022 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000587022 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000587022 7001_ $$0P:(DE-H253)PIP1020328$$aTkachenko, Victor$$b1$$eCorresponding author$$udesy
000587022 7001_ $$0P:(DE-H253)PIP1007809$$aCapotondi, Flavio$$b2
000587022 7001_ $$0P:(DE-H253)PIP1026981$$aLichtenstein, Alexander$$b3
000587022 7001_ $$0P:(DE-H253)PIP1007192$$aMolodtsov, Serguei$$b4
000587022 7001_ $$0P:(DE-HGF)0$$aPiekarz, Przemysław$$b5
000587022 7001_ $$0P:(DE-H253)PIP1003464$$aZiaja, Beata$$b6$$eCorresponding author$$udesy
000587022 77318 $$2Crossref$$3journal-article$$a10.1038/s41598-023-50467-9$$bSpringer Science and Business Media LLC$$d2024-01-04$$n1$$p473$$tScientific Reports$$v14$$x2045-2322$$y2024
000587022 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-023-50467-9$$gVol. 14, no. 1, p. 473$$n1$$p473$$tScientific reports$$v14$$x2045-2322$$y2024
000587022 8564_ $$uhttps://bib-pubdb1.desy.de/record/587022/files/HTML-Approval_of_scientific_publication.html
000587022 8564_ $$uhttps://bib-pubdb1.desy.de/record/587022/files/PDF-Approval_of_scientific_publication.pdf
000587022 8564_ $$uhttps://bib-pubdb1.desy.de/record/587022/files/Scan%2009.01.2024%2C%2015-22-2.pdf
000587022 8564_ $$uhttps://bib-pubdb1.desy.de/record/587022/files/XSPIN-nickel-main-final.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000587022 8564_ $$uhttps://bib-pubdb1.desy.de/record/587022/files/Scan%2009.01.2024%2C%2015-22-2.pdf?subformat=pdfa$$xpdfa
000587022 8564_ $$uhttps://bib-pubdb1.desy.de/record/587022/files/s41598-023-50467-9.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000587022 8564_ $$uhttps://bib-pubdb1.desy.de/record/587022/files/XSPIN-nickel-main-final.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510
000587022 8564_ $$uhttps://bib-pubdb1.desy.de/record/587022/files/s41598-023-50467-9.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599
000587022 8767_ $$8SN-2024-00419-b$$92024-01-09$$d2024-01-09$$eAPC$$jDEAL$$lSpringerNature$$v16.54$$zEinzelnachweis Rechnung SN-2024-00419-b vom 28.05.24
000587022 8767_ $$8SN-2024-00419-b$$92024$$d2024-03-06$$ePayment fee$$jDEAL$$lSpringerNature$$v0.35$$zMPDL Servicegebühr
000587022 8767_ $$8SN-2024-00419-b$$92024-01-09$$d2024-03-06$$eAPC$$jStorniert$$lSpringerNature$$zDFG OAPK (Projekt)
000587022 8767_ $$8SN-2024-00419-b$$92024-01-09$$d2024-03-06$$eAPC$$jZahlung erfolgt$$lSpringerNature$$zDFG OAPK (Projekt)
000587022 8767_ $$8SN-2024-01765-b$$92025$$d2025-07-15$$eAPC$$jStorniert$$lSpringerNature$$v-10.44$$zKorrketur MwSt -> 7%
000587022 909CO $$ooai:bib-pubdb1.desy.de:587022$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000587022 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
000587022 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
000587022 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
000587022 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000587022 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-24
000587022 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000587022 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
000587022 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2024-12-18
000587022 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000587022 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000587022 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-29T15:28:26Z
000587022 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-29T15:28:26Z
000587022 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-07-29T15:28:26Z
000587022 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000587022 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000587022 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000587022 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-18
000587022 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000587022 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
000587022 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000587022 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
000587022 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000587022 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000587022 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000587022 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000587022 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000587022 9141_ $$y2024
000587022 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086529$$aExternal Institute$$b0$$kExtern
000587022 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1020328$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000587022 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1020328$$aEuropean XFEL$$b1$$kXFEL.EU
000587022 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007809$$aExternal Institute$$b2$$kExtern
000587022 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1026981$$aEuropean XFEL$$b3$$kXFEL.EU
000587022 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1007192$$aEuropean XFEL$$b4$$kXFEL.EU
000587022 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003464$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000587022 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1003464$$aCentre for Free-Electron Laser Science$$b6$$kCFEL
000587022 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1003464$$aEuropean XFEL$$b6$$kXFEL.EU
000587022 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000587022 9201_ $$0I:(DE-H253)FS-CFEL-XM-20210408$$kFS-CFEL-XM$$lGruppe CFEL-XM$$x0
000587022 980__ $$ajournal
000587022 980__ $$aVDB
000587022 980__ $$aUNRESTRICTED
000587022 980__ $$aI:(DE-H253)FS-CFEL-XM-20210408
000587022 980__ $$aAPC
000587022 9801_ $$aAPC
000587022 9801_ $$aFullTexts
000587022 999C5 $$1W Ackermann$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2007.76$$p336 -$$tNat. Photon.$$uAckermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336–342. https://doi.org/10.1038/nphoton.2007.76 (2007).$$v1$$y2007
000587022 999C5 $$1E Allaria$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2012.233$$p699 -$$tNat. Photon.$$uAllaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704. https://doi.org/10.1038/nphoton.2012.233 (2012).$$v6$$y2012
000587022 999C5 $$1P Emma$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2010.176$$p641 -$$tNat. Photon.$$uEmma, P. et al. First lasing and operation of an Ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647. https://doi.org/10.1038/nphoton.2010.176 (2010).$$v4$$y2010
000587022 999C5 $$1D Pile$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2011.178$$p456 -$$tNat. Photon.$$uPile, D. First light from SACLA. Nat. Photon. 5, 456–457. https://doi.org/10.1038/nphoton.2011.178 (2011).$$v5$$y2011
000587022 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.18429/JACoW-FEL2017-MOC03$$uWeise, H. & Decking, W. Commissioning and first lasing of the European XFEL. In Proceedings of the 38th International Free Electron Laser Conference FEL2017, Santa Fe 2017 . 9–13 https://doi.org/10.18429/JACoW-FEL2017-MOC03 (2017).
000587022 999C5 $$1K Kapcia$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41524-022-00895-4$$p212 -$$tnpj Comput. Mater.$$uKapcia, K. et al. Modeling of ultrafast X-ray induced magnetization dynamics in magnetic multilayer systems. npj Comput. Mater. 8, 212. https://doi.org/10.1038/s41524-022-00895-4 (2022).$$v8$$y2022
000587022 999C5 $$1KJ Kapcia$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.107.094402$$tPhys. Rev. B$$uKapcia, K. J. et al. Electronic processes occurring during ultrafast demagnetization of cobalt triggered by x-ray photons tuned to the Co $${L}_{3}$$ resonance. Phys. Rev. B 107, 094402. https://doi.org/10.1103/PhysRevB.107.094402 (2023).$$v107$$y2023
000587022 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/B978-0-12-821978-2.00110-0$$uKapcia, K. J., Lipp, V., Tkachenko, V. & Ziaja, B. Theoretical analysis of X-ray free-electron-laser experimental data using Monte-Carlo and molecular-dynamics based computational tools. In Comprehensive Computational Chemistry (First Edition) (Yáñez, M. & Boyd, R. J. eds.). Vol. 3. 858–864 https://doi.org/10.1016/B978-0-12-821978-2.00110-0 (Elsevier, 2024).
000587022 999C5 $$1J Meyer$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4929482$$tJ. Chem. Phys.$$uMeyer, J. et al. The spin and orbital contributions to the total magnetic moments of free Fe Co, and Ni clusters. J. Chem. Phys. 143, 104302. https://doi.org/10.1063/1.4929482 (2015).$$v143$$y2015
000587022 999C5 $$1B Chatterjee$$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(78)91594-6$$p1455 -$$tSolid State Commun.$$uChatterjee, B. Oxidation of iron, cobalt and nickel at the Curie temperature. Solid State Commun. 27, 1455–1458. https://doi.org/10.1016/0038-1098(78)91594-6 (1978).$$v27$$y1978
000587022 999C5 $$1E Beaurepaire$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.4250$$p4250 -$$tPhys. Rev. Lett.$$uBeaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253. https://doi.org/10.1103/PhysRevLett.76.4250 (1996).$$v76$$y1996
000587022 999C5 $$1B Koopmans$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.844$$p844 -$$tPhys. Rev. Lett.$$uKoopmans, B., van Kampen, M., Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: Magnetism or optics?. Phys. Rev. Lett. 85, 844–847. https://doi.org/10.1103/PhysRevLett.85.844 (2000).$$v85$$y2000
000587022 999C5 $$1C Stamm$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1985$$p740 -$$tNat. Mater.$$uStamm, C. et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nat. Mater. 6, 740–743. https://doi.org/10.1038/nmat1985 (2007).$$v6$$y2007
000587022 999C5 $$1T Lojewski$$2Crossref$$9-- missing cx lookup --$$a10.1080/21663831.2023.2210606$$p655 -$$tMater. Res. Lett.$$uLojewski, T. et al. The interplay of local electron correlations and ultrafast spin dynamics in fcc Ni. Mater. Res. Lett. 11, 655–661. https://doi.org/10.1080/21663831.2023.2210606 (2023).$$v11$$y2023
000587022 999C5 $$1K Krieger$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jctc.5b00621$$p4870 -$$tJ. Chem. Theory Comput.$$uKrieger, K., Dewhurst, J. K., Elliott, P., Sharma, S. & Gross, E. K. U. Laser-induced demagnetization at ultrashort time scales: Predictions of TDDFT. J. Chem. Theory Comput. 11, 4870–4874. https://doi.org/10.1021/acs.jctc.5b00621 (2015).$$v11$$y2015
000587022 999C5 $$1B Rösner$$2Crossref$$9-- missing cx lookup --$$a10.1063/4.0000033$$tStruct. Dyn.$$uRösner, B. et al. Simultaneous two-color snapshot view on ultrafast charge and spin dynamics in a Fe–Cu–Ni tri-layer. Struct. Dyn. 7, 054302. https://doi.org/10.1063/4.0000033 (2020).$$v7$$y2020
000587022 999C5 $$1M Hennes$$2Crossref$$9-- missing cx lookup --$$a10.3390/app11010325$$p325 -$$tAppl. Sci.$$uHennes, M. et al. Time-resolved XUV absorption spectroscopy and magnetic circular dichroism at the Ni M$$_{2,3}$$-edges. Appl. Sci. 11, 325. https://doi.org/10.3390/app11010325 (2021).$$v11$$y2021
000587022 999C5 $$1G Kresse$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.14251$$p14251 -$$tPhys. Rev. B$$uKresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid–metal–amorphous–semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269. https://doi.org/10.1103/PhysRevB.49.14251 (1994).$$v49$$y1994
000587022 999C5 $$1G Kresse$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.11169$$p11169 -$$tPhys. Rev. B$$uKresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169 (1996).$$v54$$y1996
000587022 999C5 $$1G Kresse$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.1758$$p1758 -$$tPhys. Rev. B$$uKresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758 (1999).$$v59$$y1999
000587022 999C5 $$1PE Blöchl$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.17953$$p17953 -$$tPhys. Rev. B$$uBlöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953 (1994).$$v50$$y1994
000587022 999C5 $$1JP Perdew$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865$$p3865 -$$tPhys. Rev. Lett.$$uPerdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865 (1996).$$v77$$y1996
000587022 999C5 $$1HJ Monkhorst$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.13.5188$$p5188 -$$tPhys. Rev. B$$uMonkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188 (1976).$$v13$$y1976
000587022 999C5 $$1LS Abdallah$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4861214$$tAIP Adv.$$uAbdallah, L. S. et al. Optical conductivity of Ni$$_{1-x}$$Pt$$_x$$ alloys ($$0<x<0.25$$) from $$0.76$$ to $$6.6$$ eV. AIP Adv. 4, 017102. https://doi.org/10.1063/1.4861214 (2014).$$v4$$y2014
000587022 999C5 $$1W Wang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2019.06.041$$p11 -$$tActa Mater.$$uWang, W. et al. An experimental and theoretical study of duplex fcc+hcp cobalt based entropic alloys. Acta Mater. 176, 11–18. https://doi.org/10.1016/j.actamat.2019.06.041 (2019).$$v176$$y2019
000587022 999C5 $$1N Medvedev$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.224304$$tPhys. Rev. B$$uMedvedev, N., Jeschke, H. O. & Ziaja, B. Nonthermal graphitization of diamond induced by a femtosecond x-ray laser pulse. Phys. Rev. B 88, 224304. https://doi.org/10.1103/PhysRevB.88.224304 (2013).$$v88$$y2013
000587022 999C5 $$1N Medvedev$$2Crossref$$9-- missing cx lookup --$$a10.1051/fopen/2018003$$p3 -$$t4open$$uMedvedev, N., Tkachenko, V., Lipp, V., Li, Z. & Ziaja, B. Various damage mechanisms in carbon and silicon materials under femtosecond x-ray irradiation. 4open 1, 3. https://doi.org/10.1051/fopen/2018003 (2018).$$v1$$y2018
000587022 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-540-30283-4$$uStöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics. Springer Series in Solid-State Sciences . https://doi.org/10.1007/978-3-540-30283-4 (Springer, 2006).
000587022 999C5 $$1M Schneider$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.127201$$p127201 -$$tPhys. Rev. Lett.$$uSchneider, M. et al. Ultrafast demagnetization dominates fluence dependence of magnetic scattering at Co M edges. Phys. Rev. Lett. 125, 127201. https://doi.org/10.1103/PhysRevLett.125.127201 (2020).$$v125$$y2020
000587022 999C5 $$1C Olson$$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(80)91203-X$$p849 -$$tSolid State Commun.$$uOlson, C. & Lynch, D. Temperature dependence of the M$$_{2,3}$$ edge in nickel. Solid State Commun. 33, 849–850. https://doi.org/10.1016/0038-1098(80)91203-X (1980).$$v33$$y1980
000587022 999C5 $$1PS Miedema$$2Crossref$$9-- missing cx lookup --$$a10.1039/C9CP03593A$$p21596 -$$tPhys. Chem. Chem. Phys.$$uMiedema, P. S., Thielemann-Kühn, N., Calafell, I. A., Schüßler-Langeheine, C. & Beye, M. Strain analysis from M-edge resonant inelastic x-ray scattering of nickel oxide films. Phys. Chem. Chem. Phys. 21, 21596–21602. https://doi.org/10.1039/C9CP03593A (2019).$$v21$$y2019
000587022 999C5 $$1H-T Chang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.103.064305$$tPhys. Rev. B$$uChang, H.-T. et al. Electron thermalization and relaxation in laser-heated nickel by few-femtosecond core-level transient absorption spectroscopy. Phys. Rev. B 103, 064305. https://doi.org/10.1103/PhysRevB.103.064305 (2021).$$v103$$y2021
000587022 999C5 $$1Y Uchimoto$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0378-7753(01)00624-3$$p326 -$$tJ. Power Sources$$uUchimoto, Y., Sawada, H. & Yao, T. Changes in electronic structure by Li ion deintercalation in LiNiO$$_2$$ from nickel L-edge and O K-edge XANES. J. Power Sources 97–98, 326–327. https://doi.org/10.1016/S0378-7753(01)00624-3 (2001).$$v97–98$$y2001
000587022 999C5 $$1K Carva$$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/86/57002$$tEPL (Europhys. Lett.)$$uCarva, K., Legut, D. & Oppeneer, P. M. Influence of laser-excited electron distributions on the X-ray magnetic circular dichroism spectra: Implications for femtosecond demagnetization in Ni. EPL (Europhys. Lett.) 86, 57002. https://doi.org/10.1209/0295-5075/86/57002 (2009).$$v86$$y2011
000587022 999C5 $$1Y Ufuktepe$$2Crossref$$9-- missing cx lookup --$$a10.1002/xrs.1362$$p427 -$$tX-Ray Spectrom.$$uUfuktepe, Y., Akgül, G., Aksoy, F. & Nordlund, D. Thickness and angular dependence of the L-edge X-ray absorption of nickel thin films. X-Ray Spectrom. 40, 427–431. https://doi.org/10.1002/xrs.1362 (2011).$$v40$$y2011
000587022 999C5 $$1W Gu$$2Crossref$$9-- missing cx lookup --$$a10.1039/C4DT00308J$$p6406 -$$tDalton Trans.$$uGu, W., Wang, H. & Wang, K. Nickel. L-edge and K-edge x-ray absorption spectroscopy of non-innocent Ni[S$$_2$$C$$_2$$(CF$$_3$$)$$_2$$]$$_{2}^{n}$$ series ($$n=-2{,}-1{,}0$$): direct probe of nickel fractional oxidation state changes. Dalton Trans. 43, 6406–6413. https://doi.org/10.1039/C4DT00308J (2014).$$v43$$y2014
000587022 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.21203/rs.3.rs-955056/v1$$uPhilippi-Kobs, A. et al. Ultrafast Demagnetization Excited by Extreme Ultraviolet Light from a Free-electron Laser. https://www.researchsquare.com/article/rs-955056/v1 (2021).
000587022 999C5 $$1F Tavella$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.hedp.2017.06.001$$p22 -$$tHigh Energy Dens. Phys.$$uTavella, F. et al. Soft x-ray induced femtosecond solid-to-solid phase transition. High Energy Dens. Phys. 24, 22–27. https://doi.org/10.1016/j.hedp.2017.06.001 (2017).$$v24$$y2017
000587022 999C5 $$1I Inoue$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.126.117403$$tPhys. Rev. Lett.$$uInoue, I. et al. Atomic-scale visualization of ultrafast bond breaking in X-ray-excited diamond. Phys. Rev. Lett. 126, 117403. https://doi.org/10.1103/PhysRevLett.126.117403 (2021).$$v126$$y2021
000587022 999C5 $$1V Tkachenko$$2Crossref$$9-- missing cx lookup --$$a10.3390/app11115157$$tAppl. Sci.$$uTkachenko, V. et al. Limitations of structural insight into ultrafast melting of solid materials with X-ray diffraction imaging. Appl. Sci.https://doi.org/10.3390/app11115157 (2021).$$y2021
000587022 999C5 $$1I Inoue$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.128.223203$$tPhys. Rev. Lett.$$uInoue, I. et al. Delayed onset and directionality of X-ray-induced atomic displacements observed on subatomic length scales. Phys. Rev. Lett. 128, 223203. https://doi.org/10.1103/PhysRevLett.128.223203 (2022).$$v128$$y2022
000587022 999C5 $$1I Inoue$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.131.163201$$tPhys. Rev. Lett.$$uInoue, I. et al. Femtosecond reduction of atomic scattering factors triggered by intense X-ray pulse. Phys. Rev. Lett. 131, 163201. https://doi.org/10.1103/PhysRevLett.131.163201 (2023).$$v131$$y2023