001     586169
005     20250715172800.0
024 7 _ |a 10.1038/s41564-023-01468-x
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-03810
|2 datacite_doi
024 7 _ |a altmetric:153483996
|2 altmetric
024 7 _ |a pmid:37653009
|2 pmid
024 7 _ |a WOS:001085175700002
|2 WOS
024 7 _ |2 openalex
|a openalex:W4386332341
037 _ _ |a PUBDB-2023-03810
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Obeng, Nancy
|b 0
245 _ _ |a Bacterial c-di-GMP has a key role in establishing host–microbe symbiosis
260 _ _ |a London
|c 2023
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1700057970_16735
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Most microbes evolve faster than their hosts and should therefore driveevolution of host–microbe interactions. However, relatively little is knownabout the characteristics that define the adaptive path of microbes to hostassociation. Here we identified microbial traits that mediate adaptation tohosts by experimentally evolving the free-living bacterium Pseudomonaslurida with the nematode Caenorhabditis elegans as its host. After tenpassages, we repeatedly observed the evolution of beneficial host-specialistbacteria, with improved persistence in the nematode being associatedwith increased biofilm formation. Whole-genome sequencing revealedmutations that uniformly upregulate the bacterial second messenger,cyclic diguanylate (c-di-GMP). We subsequently generated mutants withupregulated c-di-GMP in different Pseudomonas strains and species, whichconsistently increased host association. Comparison of pseudomonadgenomes from various environments revealed that c-di-GMP underliesadaptation to a variety of hosts, from plants to humans. This study indicatesthat c-di-GMP is fundamental for establishing host association.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Czerwinski, Anna
|b 1
700 1 _ |a Schütz, Daniel
|b 2
700 1 _ |a Michels, Jan
|b 3
700 1 _ |a Leipert, Jan
|b 4
700 1 _ |a Bansept, Florence
|b 5
700 1 _ |a Garcia Garcia, Maria
|0 P:(DE-H253)PIP1093630
|b 6
700 1 _ |a Schultheiß1†, Thekla
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kemlein, Melinda
|b 8
700 1 _ |a Fuß, Janina
|b 9
700 1 _ |a Traulsen, Arne
|b 10
700 1 _ |a Sondermann, Holger
|0 P:(DE-H253)PIP1093629
|b 11
700 1 _ |a Tholey, Andreas
|b 12
700 1 _ |a Schulenburg, Hinrich
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
773 _ _ |a 10.1038/s41564-023-01468-x
|g Vol. 8, no. 10, p. 1809 - 1819
|0 PERI:(DE-600)2845610-5
|n 10
|p 1809 - 1819
|t Nature microbiology
|v 8
|y 2023
|x 2058-5276
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/586169/files/Obeng_GarciaGarcia_Sondermann_NatMicro.A.pdf
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/586169/files/s41564-023-01468-x.pdf
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/586169/files/s41564-023-01468-x.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:586169
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1093630
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1093629
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 11
|6 P:(DE-H253)PIP1093629
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MICROBIOL : 2022
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b NAT MICROBIOL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
920 1 _ |0 I:(DE-H253)CSSB-DESY-HS-20210521
|k CSSB-DESY-HS
|l Strukturelle Mikrobiologie CSSB
|x 0
920 1 _ |0 I:(DE-H253)FS-FGIP-20210408
|k FS-FGIP
|l Functional Genetics of Infektion Proz.
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CSSB-DESY-HS-20210521
980 _ _ |a I:(DE-H253)FS-FGIP-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21