000580797 001__ 580797
000580797 005__ 20250715173618.0
000580797 0247_ $$2doi$$a10.1063/5.0153149
000580797 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-01445
000580797 0247_ $$2WOS$$aWOS:001009900600003
000580797 0247_ $$2openalex$$aopenalex:W4380609668
000580797 037__ $$aPUBDB-2023-01445
000580797 041__ $$aEnglish
000580797 082__ $$a530
000580797 1001_ $$0P:(DE-H253)PIP1013169$$aSeiboth, Frank$$b0$$eCorresponding author
000580797 245__ $$aOn-chip aberration correction for planar nanofocusing x-ray lenses by focused ion-beam milling
000580797 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2023
000580797 3367_ $$2DRIVER$$aarticle
000580797 3367_ $$2DataCite$$aOutput Types/Journal article
000580797 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687333901_1927428
000580797 3367_ $$2BibTeX$$aARTICLE
000580797 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000580797 3367_ $$00$$2EndNote$$aJournal Article
000580797 520__ $$aAberration-free x-ray optics are a prerequisite for nondestructive scanning x-ray microscopy with highest spatial resolution in order to understand complex material systems and processes. Nevertheless, due to highly challenging manufacturing requirements, even state-of-the-art x-ray optics often still suffer from residual lens aberrations, and diffraction-limited performance can often only be achieved by inserting additional corrective optical elements. Here, the concept of tailor-made refractive x-ray phase plates is expanded by integrating these corrective optical elements into the focusing device directly. In this case, planar nanofocusing x-ray lenses out of silicon are corrected for aberrations by structuring the phase plate into the lens chip via focused ion-beam milling. The concept is demonstrated by focusing x-rays with an energy of 18 keV into a diffraction-limited focal spot with a size of $50 \times 65$ $nm^2$ full-width a half-maximum and a reduction in resudial intensity outside the focus by a factor of well over three.
000580797 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000580797 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000580797 536__ $$0G:(EU-Grant)101007417$$aNEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417)$$c101007417$$fH2020-INFRAIA-2020-1$$x2
000580797 588__ $$aDataset connected to DataCite
000580797 693__ $$0EXP:(DE-H253)P-P06-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P06-20150101$$aPETRA III$$fPETRA Beamline P06$$x0
000580797 7001_ $$0P:(DE-H253)PIP1011060$$aSchropp, Andreas$$b1
000580797 7001_ $$0P:(DE-H253)PIP1029523$$aLyubomirskiy, Mikhail$$b2
000580797 7001_ $$0P:(DE-H253)PIP1095989$$aWang, Wenxin$$b3
000580797 7001_ $$0P:(DE-HGF)0$$aJahn, Andreas$$b4
000580797 7001_ $$0P:(DE-H253)PIP1025923$$aKulkarni, Satishkumar$$b5
000580797 7001_ $$0P:(DE-H253)PIP1019138$$aKeller, Thomas F.$$b6
000580797 7001_ $$0P:(DE-H253)PIP1008438$$aSchroer, Christian$$b7
000580797 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/5.0153149$$n24$$p241105$$tApplied physics letters$$v122$$x0003-6951$$y2023
000580797 8564_ $$uhttps://bib-pubdb1.desy.de/record/580797/files/HTML-Approval_of_scientific_publication.html
000580797 8564_ $$uhttps://bib-pubdb1.desy.de/record/580797/files/PDF-Approval_of_scientific_publication.pdf
000580797 8564_ $$uhttps://bib-pubdb1.desy.de/record/580797/files/241105_1_5.0153149.pdf$$yOpenAccess
000580797 8564_ $$uhttps://bib-pubdb1.desy.de/record/580797/files/241105_1_5.0153149.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000580797 8767_ $$92023-12-01$$d2023-12-01$$eHybrid-OA$$jPublish and Read$$lAIP$$zAIP Publikationsreport Januar - Oktober
000580797 909CO $$ooai:bib-pubdb1.desy.de:580797$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000580797 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013169$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000580797 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1013169$$aEuropean XFEL$$b0$$kXFEL.EU
000580797 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011060$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000580797 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1011060$$aEuropean XFEL$$b1$$kXFEL.EU
000580797 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1029523$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000580797 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1029523$$aEuropean XFEL$$b2$$kXFEL.EU
000580797 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1095989$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000580797 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1095989$$aEuropean XFEL$$b3$$kXFEL.EU
000580797 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1025923$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000580797 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019138$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000580797 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1019138$$aEuropean XFEL$$b6$$kXFEL.EU
000580797 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1008438$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000580797 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1008438$$aEuropean XFEL$$b7$$kXFEL.EU
000580797 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000580797 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000580797 9141_ $$y2023
000580797 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000580797 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000580797 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000580797 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000580797 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000580797 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-21$$wger
000580797 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000580797 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000580797 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
000580797 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000580797 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000580797 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
000580797 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2022$$d2023-10-21
000580797 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000580797 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000580797 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000580797 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000580797 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000580797 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000580797 915pc $$0PC:(DE-HGF)0102$$2APC$$aTIB: AIP Publishing 2021
000580797 9201_ $$0I:(DE-H253)FS-PETRA-20140814$$kFS-PETRA$$lFS-PETRA$$x0
000580797 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x1
000580797 9801_ $$aFullTexts
000580797 980__ $$ajournal
000580797 980__ $$aVDB
000580797 980__ $$aUNRESTRICTED
000580797 980__ $$aI:(DE-H253)FS-PETRA-20140814
000580797 980__ $$aI:(DE-H253)FS-NL-20120731
000580797 980__ $$aAPC