001     486574
005     20230214113328.0
024 7 _ |a Funcke:2021glr
|2 INSPIRETeX
024 7 _ |a inspire:1956017
|2 inspire
024 7 _ |a arXiv:2110.15642
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2022-07360
|2 datacite_doi
037 _ _ |a PUBDB-2022-07360
041 _ _ |a English
088 _ _ |a arXiv:2110.15642
|2 arXiv
088 _ _ |a MIT-CTP/5348
|2 Other
100 1 _ |a Funcke, Lena
|0 L.Funcke.1
|b 0
245 _ _ |a CP-violating Dashen phase transition in the two-flavor Schwinger model: a study with matrix product states
260 _ _ |c 2022
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1670326448_10570
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 9 pages, 3 figures, proceedings of the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Zoom/Gather@Massachusetts Institute of Technology, version 2: updated funding information
520 _ _ |a We numerically study the Hamiltonian lattice formulation of the two-flavor Schwinger model using matrix product states. Keeping the mass of the first flavor at a fixed positive value, we tune the mass of the second flavor through a range of negative values, thus exploring a regime where conventional Monte Carlo methods suffer from the sign problem and may run into instabilities due to zero modes. Our results indicate a phase transition at the point where the absolute value of the second flavor mass approaches the first flavor mass. The phase transition is accompanied by the formation of a fermion condensate, a steep drop of the average electric field, and a peak in the bipartite entanglement entropy. Our data hints at a second order transition, which is the 1+1D analog of the CP-violating Dashen phase transition in QCD.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference, INSPIRE
650 _ 7 |a CP: violation
|2 INSPIRE
650 _ 7 |a fermion: condensation
|2 INSPIRE
650 _ 7 |a entropy: entanglement
|2 INSPIRE
650 _ 7 |a critical phenomena
|2 INSPIRE
650 _ 7 |a flavor
|2 INSPIRE
650 _ 7 |a Schwinger model
|2 INSPIRE
650 _ 7 |a quantum chromodynamics
|2 INSPIRE
650 _ 7 |a zero mode
|2 INSPIRE
650 _ 7 |a Hamiltonian
|2 INSPIRE
650 _ 7 |a stability
|2 INSPIRE
650 _ 7 |a lattice
|2 INSPIRE
650 _ 7 |a electric field
|2 INSPIRE
650 _ 7 |a formation
|2 INSPIRE
650 _ 7 |a Monte Carlo
|2 INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Jansen, Karl
|0 P:(DE-H253)PIP1003636
|b 1
700 1 _ |a Kühn, Stefan
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/486574/files/2110.15642v2.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/486574/files/2110.15642v2.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:486574
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1003636
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)Z_ZPPT-20210408
|k Z_ZPPT
|l Zeuthen Particle PhysicsTheory
|x 0
920 1 _ |0 I:(DE-H253)Z_TH-20210408
|k Z_TH
|l Theorie
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)Z_ZPPT-20210408
980 _ _ |a I:(DE-H253)Z_TH-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21