Home > Publications database > Culling a self-assembled quantum dot as a single-photon source using X-ray microscopy > print |
001 | 483355 | ||
005 | 20250715173526.0 | ||
024 | 7 | _ | |a 10.1021/acsnano.3c04835 |2 doi |
024 | 7 | _ | |a 1936-0851 |2 ISSN |
024 | 7 | _ | |a 1936-086X |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2022-05258 |2 datacite_doi |
024 | 7 | _ | |a 37523736 |2 pmid |
024 | 7 | _ | |a WOS:001040500800001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4385408867 |
037 | _ | _ | |a PUBDB-2022-05258 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Dey, Arka Bikash |0 P:(DE-H253)PIP1020660 |b 0 |e Corresponding author |
245 | _ | _ | |a Culling a self-assembled quantum dot as a single-photon source using X-ray microscopy |
260 | _ | _ | |a Washington, DC |c 2023 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1692946238_1655315 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a The paper is published in "ASAP" category, the volume number and page number are yet to come. The DOI number is already assigned. |
520 | _ | _ | |a Epitaxially grown self-assembled semiconductor quantum dots (QDs) with atom-like optical properties, have emerged as the best choice for single photon sources required for the development of quantum technology and quantum networks. Nondestructive selection of a single QD having desired structural, compositional, and optical characteristics is essential to obtain noise-free, fully indistinguishable single or entangled photons out of single-photon emitters. Here, we show that the structural-orientations and local compositional-inhomogeneities within a single QD and the surrounding wet-layer can be probed in a screening fashion by scanning X-ray diffraction microscopy (SXDM) and X-ray fluorescence (XRF) with a few tens of nanometers-sized synchrotron radiation-beam. The presented measurement protocol can be used to cull the best single QD from the enormous number of self-assembled dots grown simultaneously. The results obtained show that the elemental composition and resultant strain profiles of a QD are sensitive to in-plane crystallographic directions. We also observe that lattice expansion after a certain composition-limit introduces shear strain within a QD, enabling the possibility of controlled chiral-QD formation. Nanoscale-chirality and compositional-anisotropy, contradictory to common assumption, need to be incorporated into existing theoretical models to predict the optical properties of single-photon sources and to further tune the epitaxial growth process of self-assembled quantum structures. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
536 | _ | _ | |a NEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417) |0 G:(EU-Grant)101007417 |c 101007417 |f H2020-INFRAIA-2020-1 |x 2 |
536 | _ | _ | |a INDIA-DESY - INDIA-DESY Collaboration (2020_Join2-INDIA-DESY) |0 G:(DE-HGF)2020_Join2-INDIA-DESY |c 2020_Join2-INDIA-DESY |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P06 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P06-20150101 |6 EXP:(DE-H253)P-P06-20150101 |x 0 |
693 | _ | _ | |a PETRA III |f PETRA Beamline P08 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P08-20150101 |6 EXP:(DE-H253)P-P08-20150101 |x 1 |
700 | 1 | _ | |a Sanyal, Milan |0 P:(DE-H253)PIP1013113 |b 1 |e Corresponding author |
700 | 1 | _ | |a Schropp, Andreas |0 P:(DE-H253)PIP1011060 |b 2 |
700 | 1 | _ | |a Achiles, Silvio |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Keller, Thomas F. |0 P:(DE-H253)PIP1019138 |b 4 |
700 | 1 | _ | |a Farrer, Ian |0 P:(DE-H253)PIP1019146 |b 5 |
700 | 1 | _ | |a Ritchie, David A. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Bertram, Florian |0 P:(DE-H253)PIP1007852 |b 7 |
700 | 1 | _ | |a Schroer, Christian |0 P:(DE-H253)PIP1008438 |b 8 |
700 | 1 | _ | |a Seeck, Oliver |0 P:(DE-H253)PIP1001518 |b 9 |
773 | _ | _ | |a 10.1021/acsnano.3c04835 |g p. acsnano.3c04835 |0 PERI:(DE-600)2383064-5 |n 16 |p 16080 - 16088 |t ACS nano |v 17 |y 2023 |x 1936-0851 |
856 | 4 | _ | |u https://pubs.acs.org/doi/10.1021/acsnano.3c04835 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/483355/files/ACS-Dashboard.PNG |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/483355/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/483355/files/Internal%20Reviewer%20text%20from%20Dr%20Chen%20Shen.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/483355/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/483355/files/ACS-Dashboard.gif?subformat=icon |x icon |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/483355/files/ACS-Dashboard.jpg?subformat=icon-180 |x icon-180 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/483355/files/ACS-Dashboard.jpg?subformat=icon-700 |x icon-700 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/483355/files/Internal%20Reviewer%20text%20from%20Dr%20Chen%20Shen.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/483355/files/acsnano.3c04835.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/483355/files/published%20supplementary%20information.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/483355/files/acsnano.3c04835.pdf?subformat=pdfa |x pdfa |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/483355/files/published%20supplementary%20information.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:483355 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1020660 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1013113 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1011060 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1011060 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1019138 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 4 |6 P:(DE-H253)PIP1019138 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1019146 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1007852 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1008438 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 8 |6 P:(DE-H253)PIP1008438 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1001518 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a Helmholtz: American Chemical Society 01/01/2023 |2 APC |0 PC:(DE-HGF)0122 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-18 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-18 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-25 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS NANO : 2022 |d 2023-10-25 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ACS NANO : 2022 |d 2023-10-25 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-D-20210408 |k FS-PETRA-D |l PETRA-D |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-NL-20120731 |k FS-NL |l Nanolab |x 1 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 2 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-20140814 |k FS-PETRA |l FS-PETRA |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-D-20210408 |
980 | _ | _ | |a I:(DE-H253)FS-NL-20120731 |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-20140814 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|