001     483355
005     20250715173526.0
024 7 _ |a 10.1021/acsnano.3c04835
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-05258
|2 datacite_doi
024 7 _ |a 37523736
|2 pmid
024 7 _ |a WOS:001040500800001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4385408867
037 _ _ |a PUBDB-2022-05258
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Dey, Arka Bikash
|0 P:(DE-H253)PIP1020660
|b 0
|e Corresponding author
245 _ _ |a Culling a self-assembled quantum dot as a single-photon source using X-ray microscopy
260 _ _ |a Washington, DC
|c 2023
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692946238_1655315
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a The paper is published in "ASAP" category, the volume number and page number are yet to come. The DOI number is already assigned.
520 _ _ |a Epitaxially grown self-assembled semiconductor quantum dots (QDs) with atom-like optical properties, have emerged as the best choice for single photon sources required for the development of quantum technology and quantum networks. Nondestructive selection of a single QD having desired structural, compositional, and optical characteristics is essential to obtain noise-free, fully indistinguishable single or entangled photons out of single-photon emitters. Here, we show that the structural-orientations and local compositional-inhomogeneities within a single QD and the surrounding wet-layer can be probed in a screening fashion by scanning X-ray diffraction microscopy (SXDM) and X-ray fluorescence (XRF) with a few tens of nanometers-sized synchrotron radiation-beam. The presented measurement protocol can be used to cull the best single QD from the enormous number of self-assembled dots grown simultaneously. The results obtained show that the elemental composition and resultant strain profiles of a QD are sensitive to in-plane crystallographic directions. We also observe that lattice expansion after a certain composition-limit introduces shear strain within a QD, enabling the possibility of controlled chiral-QD formation. Nanoscale-chirality and compositional-anisotropy, contradictory to common assumption, need to be incorporated into existing theoretical models to predict the optical properties of single-photon sources and to further tune the epitaxial growth process of self-assembled quantum structures.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a NEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417)
|0 G:(EU-Grant)101007417
|c 101007417
|f H2020-INFRAIA-2020-1
|x 2
536 _ _ |a INDIA-DESY - INDIA-DESY Collaboration (2020_Join2-INDIA-DESY)
|0 G:(DE-HGF)2020_Join2-INDIA-DESY
|c 2020_Join2-INDIA-DESY
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P06
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P06-20150101
|6 EXP:(DE-H253)P-P06-20150101
|x 0
693 _ _ |a PETRA III
|f PETRA Beamline P08
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P08-20150101
|6 EXP:(DE-H253)P-P08-20150101
|x 1
700 1 _ |a Sanyal, Milan
|0 P:(DE-H253)PIP1013113
|b 1
|e Corresponding author
700 1 _ |a Schropp, Andreas
|0 P:(DE-H253)PIP1011060
|b 2
700 1 _ |a Achiles, Silvio
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Keller, Thomas F.
|0 P:(DE-H253)PIP1019138
|b 4
700 1 _ |a Farrer, Ian
|0 P:(DE-H253)PIP1019146
|b 5
700 1 _ |a Ritchie, David A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bertram, Florian
|0 P:(DE-H253)PIP1007852
|b 7
700 1 _ |a Schroer, Christian
|0 P:(DE-H253)PIP1008438
|b 8
700 1 _ |a Seeck, Oliver
|0 P:(DE-H253)PIP1001518
|b 9
773 _ _ |a 10.1021/acsnano.3c04835
|g p. acsnano.3c04835
|0 PERI:(DE-600)2383064-5
|n 16
|p 16080 - 16088
|t ACS nano
|v 17
|y 2023
|x 1936-0851
856 4 _ |u https://pubs.acs.org/doi/10.1021/acsnano.3c04835
856 4 _ |u https://bib-pubdb1.desy.de/record/483355/files/ACS-Dashboard.PNG
856 4 _ |u https://bib-pubdb1.desy.de/record/483355/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/483355/files/Internal%20Reviewer%20text%20from%20Dr%20Chen%20Shen.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/483355/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/483355/files/ACS-Dashboard.gif?subformat=icon
|x icon
856 4 _ |u https://bib-pubdb1.desy.de/record/483355/files/ACS-Dashboard.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://bib-pubdb1.desy.de/record/483355/files/ACS-Dashboard.jpg?subformat=icon-700
|x icon-700
856 4 _ |u https://bib-pubdb1.desy.de/record/483355/files/Internal%20Reviewer%20text%20from%20Dr%20Chen%20Shen.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/483355/files/acsnano.3c04835.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/483355/files/published%20supplementary%20information.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/483355/files/acsnano.3c04835.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/483355/files/published%20supplementary%20information.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:483355
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1020660
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1013113
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1011060
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1011060
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1019138
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1019138
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1019146
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1007852
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1008438
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1008438
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1001518
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|2 APC
|0 PC:(DE-HGF)0122
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2022
|d 2023-10-25
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACS NANO : 2022
|d 2023-10-25
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 0
920 1 _ |0 I:(DE-H253)FS-NL-20120731
|k FS-NL
|l Nanolab
|x 1
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 2
920 1 _ |0 I:(DE-H253)FS-PETRA-20140814
|k FS-PETRA
|l FS-PETRA
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 _ _ |a I:(DE-H253)FS-NL-20120731
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-20140814
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21