Home > Publications database > Surface characterization and resistance changes of silver-nanowire networks upon atmospheric plasma treatment > print |
001 | 473657 | ||
005 | 20250716150647.0 | ||
024 | 7 | _ | |a 10.1016/j.apsusc.2021.149362 |2 doi |
024 | 7 | _ | |a 0169-4332 |2 ISSN |
024 | 7 | _ | |a 1873-5584 |2 ISSN |
024 | 7 | _ | |a WOS:000634104800006 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W3129940369 |
037 | _ | _ | |a PUBDB-2022-00170 |
041 | _ | _ | |a English |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Akinsinde, Lewis O. |0 P:(DE-H253)PIP1025449 |b 0 |e Corresponding author |
245 | _ | _ | |a Surface characterization and resistance changes of silver-nanowire networks upon atmospheric plasma treatment |
260 | _ | _ | |a Amsterdam |c 2021 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1642411695_8214 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Waiting for fulltext |
520 | _ | _ | |a Highly conductive silver-nanowire (Ag-NW) networks are used in composite materials as conductive channels. Their resistance tuning can be accomplished by changing the Ag-NW concentration, and, therefore, changing the network structure. In this study, an alternative pathway to resistance engineering of conductive Ag-NW networks by local atmospheric plasma treatment is employed. The corresponding changes in nanowire network morphology and crystallinity as a function of plasma etching time are investigated by time-resolved grazing-incidence X-ray scattering, field-effect scanning electron microscopy, and X-ray photoelectron spectroscopy. Three characteristic etching phases are identified. The first two phases enable the controlled engineering of the electrical properties with different rates of resistance change, which results from changes in nanowire shape, network morphology, and different oxidation rates. Phase III is characterized by pronounced fragmentation and destruction of the Ag-NW networks. These results show the feasibility of atmospheric plasma treatments to tune the local electrical properties of conductive Ag-NW networks. Furthermore, we present a physical Monte Carlo model explaining the electrical network properties as a function of plasma etching time based on the network connectivity and a constant plasma etching rate of 570 ng s$^{−1}$ cm$^{−2}$. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P03 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P03-20150101 |6 EXP:(DE-H253)P-P03-20150101 |x 0 |
700 | 1 | _ | |a Glier, Tomke E. |0 P:(DE-H253)PIP1028704 |b 1 |e Corresponding author |
700 | 1 | _ | |a Schwartzkopf, Matthias |0 P:(DE-H253)PIP1010504 |b 2 |e Corresponding author |
700 | 1 | _ | |a Betker, Marie |0 P:(DE-H253)PIP1084398 |b 3 |
700 | 1 | _ | |a Nissen, Matz |b 4 |
700 | 1 | _ | |a Witte, Maximilian |b 5 |
700 | 1 | _ | |a Scheitz, Sarah |0 P:(DE-H253)PIP1080176 |b 6 |
700 | 1 | _ | |a Nweze, Christian |0 P:(DE-H253)PIP1082475 |b 7 |
700 | 1 | _ | |a Grimm-Lebsanft, Benjamin |0 P:(DE-H253)PIP1018557 |b 8 |
700 | 1 | _ | |a Gensch, Marc |0 P:(DE-H253)PIP1019352 |b 9 |
700 | 1 | _ | |a Chumakov, Andrei |0 P:(DE-H253)PIP1088640 |b 10 |
700 | 1 | _ | |a Baev, Ivan |0 P:(DE-H253)PIP1007381 |b 11 |
700 | 1 | _ | |a Schürmann, Ulrich |b 12 |
700 | 1 | _ | |a Dankwort, Torben |b 13 |
700 | 1 | _ | |a Fischer, Frank |b 14 |
700 | 1 | _ | |a Martins, Michael |0 P:(DE-H253)PIP1001989 |b 15 |
700 | 1 | _ | |a Roth, Stephan V. |0 P:(DE-H253)PIP1003299 |b 16 |
700 | 1 | _ | |a Kienle, Lorenz |0 P:(DE-H253)PIP1015170 |b 17 |
700 | 1 | _ | |a Ruebhausen, Michael |0 P:(DE-H253)PIP1007952 |b 18 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.apsusc.2021.149362 |g Vol. 550, p. 149362 - |0 PERI:(DE-600)2002520-8 |p 149362 |t Applied surface science |v 550 |y 2021 |x 0169-4332 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/473657/files/Akinsinde2021_1-s2.0-S0169433221004384-main.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/473657/files/Akinsinde2021_1-s2.0-S0169433221004384-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:473657 |p VDB |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 0 |6 P:(DE-H253)PIP1025449 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1025449 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1028704 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1010504 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1084398 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 6 |6 P:(DE-H253)PIP1080176 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1080176 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 7 |6 P:(DE-H253)PIP1082475 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1082475 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1018557 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1019352 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 10 |6 P:(DE-H253)PIP1088640 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-H253)PIP1007381 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 11 |6 P:(DE-H253)PIP1007381 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 15 |6 P:(DE-H253)PIP1001989 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 15 |6 P:(DE-H253)PIP1001989 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 16 |6 P:(DE-H253)PIP1003299 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 16 |6 P:(DE-H253)PIP1003299 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 17 |6 P:(DE-H253)PIP1015170 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 18 |6 P:(DE-H253)PIP1007952 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l From Matter to Materials and Life |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-29 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL SURF SCI : 2019 |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-29 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-29 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b APPL SURF SCI : 2019 |d 2021-01-29 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-D-20210408 |k FS-PETRA-D |l PETRA-D |x 1 |
920 | 1 | _ | |0 I:(DE-H253)CFEL-AO-20160914 |k CFEL-AO |l UNI/INF |x 2 |
920 | 1 | _ | |0 I:(DE-H253)UNI_EXP-20120731 |k UNI/EXP |l Uni Hamburg / Experimentalphysik |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-D-20210408 |
980 | _ | _ | |a I:(DE-H253)CFEL-AO-20160914 |
980 | _ | _ | |a I:(DE-H253)UNI_EXP-20120731 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|