000462807 001__ 462807
000462807 005__ 20250724175646.0
000462807 0247_ $$2doi$$a10.1103/PhysRevB.104.054116
000462807 0247_ $$2ISSN$$a1098-0121
000462807 0247_ $$2ISSN$$a2469-9977
000462807 0247_ $$2ISSN$$a0163-1829
000462807 0247_ $$2ISSN$$a0556-2805
000462807 0247_ $$2ISSN$$a1095-3795
000462807 0247_ $$2ISSN$$a1538-4489
000462807 0247_ $$2ISSN$$a1550-235X
000462807 0247_ $$2ISSN$$a2469-9950
000462807 0247_ $$2ISSN$$a2469-9969
000462807 0247_ $$2datacite_doi$$a10.3204/PUBDB-2021-03561
000462807 0247_ $$2WOS$$aWOS:000688521600001
000462807 0247_ $$2openalex$$aopenalex:W3193450566
000462807 037__ $$aPUBDB-2021-03561
000462807 041__ $$aEnglish
000462807 082__ $$a530
000462807 1001_ $$0P:(DE-H253)PIP1025307$$aRamakrishnan, Sitaram$$b0
000462807 245__ $$aModulated crystal structure of the atypical charge density wave state of single-crystal Lu$_2$Ir$_3$Si$_5$
000462807 260__ $$aWoodbury, NY$$bInst.$$c2021
000462807 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2021-08-24
000462807 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2021-08-01
000462807 3367_ $$2DRIVER$$aarticle
000462807 3367_ $$2DataCite$$aOutput Types/Journal article
000462807 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1631783593_6842
000462807 3367_ $$2BibTeX$$aARTICLE
000462807 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000462807 3367_ $$00$$2EndNote$$aJournal Article
000462807 520__ $$aThe three-dimensional charge density wave (CDW) compound Lu$_2$Ir$_3$Si$_5$ undergoes a first-order CDW phase transition at around 200 K. An atypical CDW state is found, that is characterized by an incommensurate CDW with q=[0.2499(3),0.4843(4),0.2386(2)] at 60 K, and a large orthorhombic-to-triclinic lattice distortion with β=91.945(2)∘. We present the modulated crystal structure of the incommensurate CDW state. Structural analysis shows that the CDW resides on the zigzag chains of iridium atoms along c. The structural distortions are completely similar between nonmagnetic Lu$_2$Ir$_3$Si$_5$ and previously studied isostructural magnetic Er$_2$Ir$_3$Si$_5$5 with the small differences explained by the different values of the atomic radii of Lu and Er. Such a similarity is unique to R$_2$Ir$_3$Si$_5$ (R=rareearth). It differs from, for example, the rare-earth CDW compounds R$_5$Ir$_4$Si$_{10}$ for which Lu$_5$Ir$_4$Si$_{10}$ and Er5Ir4Si10 possess entirely different CDW states. We argue that the mechanism of CDW formation, thus, is different for R$_2$Ir$_3$Si$_5$ and R$_5$Ir$_4$Si$_{10}$. 
000462807 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000462807 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000462807 536__ $$0G:(DE-H253)I-20190544$$aFS-Proposal: I-20190544 (I-20190544)$$cI-20190544$$x2
000462807 542__ $$2Crossref$$i2021-08-24$$uhttps://link.aps.org/licenses/aps-default-license
000462807 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000462807 693__ $$0EXP:(DE-H253)P-P24-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P24-20150101$$aPETRA III$$fPETRA Beamline P24$$x0
000462807 7001_ $$0P:(DE-H253)PIP1008632$$aSchoenleber, Andreas$$b1
000462807 7001_ $$0P:(DE-H253)PIP1092001$$aBao, Jinke$$b2
000462807 7001_ $$0P:(DE-H253)PIP1083439$$aRekis, Toms$$b3
000462807 7001_ $$0P:(DE-H253)PIP1090886$$aKotla, Surya Rohith$$b4
000462807 7001_ $$0P:(DE-H253)PIP1083430$$aSchaller, Achim$$b5
000462807 7001_ $$0P:(DE-H253)PIP1008136$$avan Smaalen, Sander$$b6$$eCorresponding author
000462807 7001_ $$0P:(DE-H253)PIP1013208$$aNoohinejad, Leila$$b7$$udesy
000462807 7001_ $$0P:(DE-H253)PIP1007498$$aTolkiehn, Martin$$b8$$udesy
000462807 7001_ $$0P:(DE-H253)PIP1001761$$aPaulmann, Carsten$$b9
000462807 7001_ $$00000-0003-4192-7729$$aSangeetha, N. S.$$b10
000462807 7001_ $$00000-0002-3234-257X$$aPal, Dilip$$b11
000462807 7001_ $$0P:(DE-HGF)0$$aThamizhavel, Arumugam$$b12
000462807 7001_ $$00000-0002-1959-7746$$aRamakrishnan, Srinivasan$$b13$$eCorresponding author
000462807 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.104.054116$$bAmerican Physical Society (APS)$$d2021-08-24$$n5$$p054116$$tPhysical Review B$$v104$$x2469-9950$$y2021
000462807 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.104.054116$$gVol. 104, no. 5, p. 054116$$n5$$p054116$$tPhysical review / B$$v104$$x2469-9950$$y2021
000462807 8564_ $$uhttps://bib-pubdb1.desy.de/record/462807/files/PhysRevB.104.054116.pdf$$yOpenAccess
000462807 8564_ $$uhttps://bib-pubdb1.desy.de/record/462807/files/PhysRevB.104.054116.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000462807 909CO $$ooai:bib-pubdb1.desy.de:462807$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000462807 9101_ $$0I:(DE-588)1029605-0$$6P:(DE-H253)PIP1025307$$aUniversität Bayreuth$$b0$$k
000462807 9101_ $$0I:(DE-588)1029605-0$$6P:(DE-H253)PIP1008632$$aUniversität Bayreuth$$b1$$k
000462807 9101_ $$0I:(DE-588)1029605-0$$6P:(DE-H253)PIP1092001$$aUniversität Bayreuth$$b2$$k
000462807 9101_ $$0I:(DE-588)1029605-0$$6P:(DE-H253)PIP1083439$$aUniversität Bayreuth$$b3$$k
000462807 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090886$$aExternal Institute$$b4$$kExtern
000462807 9101_ $$0I:(DE-588)1029605-0$$6P:(DE-H253)PIP1090886$$aUniversität Bayreuth$$b4$$k
000462807 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083430$$aExternal Institute$$b5$$kExtern
000462807 9101_ $$0I:(DE-588)1029605-0$$6P:(DE-H253)PIP1083430$$aUniversität Bayreuth$$b5$$k
000462807 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008136$$aExternal Institute$$b6$$kExtern
000462807 9101_ $$0I:(DE-588)1029605-0$$6P:(DE-H253)PIP1008136$$aUniversität Bayreuth$$b6$$k
000462807 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013208$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000462807 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007498$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000462807 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1001761$$aExternal Institute$$b9$$kExtern
000462807 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMatter – Dynamics, Mechanisms and Control$$x0
000462807 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000462807 9141_ $$y2021
000462807 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000462807 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000462807 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000462807 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000462807 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000462807 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000462807 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000462807 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000462807 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000462807 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000462807 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-10-13
000462807 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000462807 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000462807 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000462807 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000462807 9201_ $$0I:(DE-588)1029605-0$$kUBT$$lUniversität Bayreuth$$x1
000462807 9201_ $$0I:(DE-H253)FS-PETRA-D-20210408$$kFS-PETRA-D$$lPETRA-D$$x2
000462807 980__ $$ajournal
000462807 980__ $$aVDB
000462807 980__ $$aUNRESTRICTED
000462807 980__ $$aI:(DE-H253)HAS-User-20120731
000462807 980__ $$aI:(DE-588)1029605-0
000462807 980__ $$aI:(DE-H253)FS-PETRA-D-20210408
000462807 9801_ $$aFullTexts
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018732.2012.719674
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.041103
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018732.2020.1837833
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.0c00579
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6633/aa7d5f
000462807 999C5 $$1G. Grüner$$2Crossref$$oG. Grüner Charge Density Waves in Solids 1994$$tCharge Density Waves in Solids$$y1994
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(82)90079-5
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.24.2850
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/391/1/012095
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.73.3227
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.99.195140
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.155122
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.075109
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevMaterials.3.125003
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.14516
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.035114
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.155131
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.13587
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.156406
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.101.155140
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.076404
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.054120
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.165108
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.235156
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.100.104107
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.176601
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.045109
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.045115
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.155121
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.205131
000462807 999C5 $$1R. Padam$$2Crossref$$oR. Padam AIP Conf. Proc. 2012$$tAIP Conf. Proc.$$y2012
000462807 999C5 $$1P. C. Lalngilneia$$2Crossref$$oP. C. Lalngilneia AIP Conf. Proc. No. 2014$$tAIP Conf. Proc. No.$$y2014
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.101.060101
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemmater.1c00005
000462807 999C5 $$1Agilent Technologies UK$$2Crossref$$oAgilent Technologies UK CrysAlisPRO Software 2014$$tCrysAlisPRO Software$$y2014
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0108767310042297
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S2053273319000664
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1712084
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.195101
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.7266
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1117028109
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1515/zkri-2014-1737
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577516002411
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889809043234
000462807 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889802022628
000462807 999C5 $$1G. M. Sheldrick$$2Crossref$$oG. M. Sheldrick SADABS Software, Version 2008/1 2008$$tSADABS Software, Version 2008/1$$y2008