| Home > Publications database > ATLAS17LS – A large-format prototype silicon strip sensor for long-strip barrel section of ATLAS ITk strip detector > print |
| 001 | 453755 | ||
| 005 | 20250724175226.0 | ||
| 024 | 7 | _ | |a 10.1016/j.nima.2020.164928 |2 doi |
| 024 | 7 | _ | |a Unno:2021bqm |2 INSPIRETeX |
| 024 | 7 | _ | |a inspire:1839785 |2 inspire |
| 024 | 7 | _ | |a 0168-9002 |2 ISSN |
| 024 | 7 | _ | |a 1872-9576 |2 ISSN |
| 024 | 7 | _ | |a altmetric:95666818 |2 altmetric |
| 024 | 7 | _ | |a WOS:000611928700008 |2 WOS |
| 024 | 7 | _ | |a openalex:W3112730400 |2 openalex |
| 037 | _ | _ | |a PUBDB-2021-00146 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Unno, Y. |0 INSPIRE-00133014 |b 0 |e Corresponding author |
| 245 | _ | _ | |a ATLAS17LS – A large-format prototype silicon strip sensor for long-strip barrel section of ATLAS ITk strip detector |
| 260 | _ | _ | |a Amsterdam |c 2021 |b North-Holland Publ. Co. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1637677690_8856 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a Waiting for fulltext |
| 520 | _ | _ | |a The ATLAS experiment is going to replace the current Inner Detector with an all new inner tracker (ITk) in the ATLAS detector for HL-LHC at CERN. Silicon strip detectors cover the outer layers of the barrel and the endcap sections. We have designed and fabricated a prototype single-sided n + -in-p AC-coupled silicon strip sensor for the outer barrel layer with long strips (LS), ATLAS17LS. It is of the maximum allowable size to fit in a 6-in. silicon wafer, with an outer dimension of 9.80 (width) × 9.76 (length) cm$^2$. The sensor features two rows of LS strip segments, 4.83 cm strip length per segment, a strip pitch of 75.5 μm , and a slim edge design. We have implemented technology for high voltage operation of up to 1000 V, with a good signal collection after irradiation fluence of 5.6 × 10$^{14}$ n$_{eq}$∕cm$^2$ at the end of HL-LHC operation. We had two objectives for the ATLAS17LS fabrication: qualification of the sensor design and fabrication quality, and providing an adequate number of the sensors for prototyping the building blocks of the strip detector. The sensors were fabricated in 3 batches by HPK with standard wafers from the foundry (320 $\mu m$ physical thickness). Additional 10 sensors were fabricated with a thinner active thickness of 240 $\mu m$ to investigate the influence of active thickness on charge collection. Another additional 5 sensors, with special passivation to investigate the influence of passivation on humidity sensitivity. The visual inspection of fabricated sensors revealed an inadequacy that the designed metal width of 10 $\mu m$ was too narrow. The initial measurements by the vendor showed that the sensors fulfilled the specifications: onset voltages of Microdischarge $V_{MD}$ above the operation voltage $V_{OP}$ (700 V for the 1st and 2nd batches; 500 V for the 3rd batch, which has improved the yield), leakage currents of < 0.1 $\mu$A/cm$^2$ at $V_{OP}$, full depletion voltages $V_{FD}$ < 330 V, and rates of bad strips << 1%. |
| 536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, INSPIRE |
| 650 | _ | 7 | |a * Automatic Keywords * |2 INSPIRE |
| 650 | _ | 7 | |a dimension: 9 |2 INSPIRE |
| 650 | _ | 7 | |a silicon |2 INSPIRE |
| 650 | _ | 7 | |a ATLAS |2 INSPIRE |
| 650 | _ | 7 | |a tracking detector |2 INSPIRE |
| 650 | _ | 7 | |a irradiation |2 INSPIRE |
| 650 | _ | 7 | |a CERN Lab |2 INSPIRE |
| 650 | _ | 7 | |a n-in-p |2 autogen |
| 650 | _ | 7 | |a p-type |2 autogen |
| 650 | _ | 7 | |a Strip |2 autogen |
| 650 | _ | 7 | |a Silicon |2 autogen |
| 650 | _ | 7 | |a Radiation tolerant |2 autogen |
| 650 | _ | 7 | |a HL-LHC |2 autogen |
| 693 | _ | _ | |a LHC |e Facility (machine) LHC |1 EXP:(DE-588)4398783-7 |0 EXP:(DE-H253)LHC(machine)-20150101 |5 EXP:(DE-H253)LHC(machine)-20150101 |x 0 |
| 700 | 1 | _ | |a Abo, Y. |0 Y.Abo.1 |b 1 |
| 700 | 1 | _ | |a Affolder, A. |0 A.Affolder.2 |b 2 |
| 700 | 1 | _ | |a Allport, P. |b 3 |
| 700 | 1 | _ | |a Bloch, I. |0 P:(DE-H253)PIP1014657 |b 4 |
| 700 | 1 | _ | |a Blue, A. |b 5 |
| 700 | 1 | _ | |a Fadeyev, V. |0 V.Fadeyev.2 |b 6 |
| 700 | 1 | _ | |a Fernandez-Tejero, J. |b 7 |
| 700 | 1 | _ | |a Gregor, I. |0 P:(DE-H253)PIP1004563 |b 8 |
| 700 | 1 | _ | |a Haber, C. |0 C.Haber.1 |b 9 |
| 700 | 1 | _ | |a Hara, K. |b 10 |
| 700 | 1 | _ | |a Hommels, B. |0 B.Hommels.1 |b 11 |
| 700 | 1 | _ | |a Kamada, S. |0 Shintaro.Kamada.1 |b 12 |
| 700 | 1 | _ | |a Koffas, T. |0 T.Koffas.1 |b 13 |
| 700 | 1 | _ | |a Lacker, H. |b 14 |
| 700 | 1 | _ | |a Miyagawa, P. S. |0 0000-0002-4893-6778 |b 15 |
| 700 | 1 | _ | |a Parzefall, U. |0 U.Parzefall.1 |b 16 |
| 700 | 1 | _ | |a Sawyer, C. A. |b 17 |
| 700 | 1 | _ | |a Ullan, M. |0 0000-0003-0728-1805 |b 18 |
| 700 | 1 | _ | |a Yamamura, K. |0 K.Yamamura.1 |b 19 |
| 700 | 1 | _ | |a Zhu, H. |b 20 |
| 773 | _ | _ | |a 10.1016/j.nima.2020.164928 |g Vol. 989, p. 164928 - |0 PERI:(DE-600)1466532-3 |p 164928 |t Nuclear instruments & methods in physics research / A |v 989 |y 2021 |x 0168-9002 |
| 909 | C | O | |p VDB |o oai:bib-pubdb1.desy.de:453755 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 INSPIRE-00133014 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1014657 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1004563 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and Technologies |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
| 913 | 0 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF3-630 |0 G:(DE-HGF)POF3-631 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v Accelerator R & D |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-09-04 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NUCL INSTRUM METH A : 2018 |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-09-04 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-09-04 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-04 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-04 |
| 920 | 1 | _ | |0 I:(DE-H253)ZEU-DLAB-20130226 |k ZEU-DLAB |l beauftragt von ZEU-SEK |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-H253)ZEU-DLAB-20130226 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|