000453755 001__ 453755
000453755 005__ 20250724175226.0
000453755 0247_ $$2doi$$a10.1016/j.nima.2020.164928
000453755 0247_ $$2INSPIRETeX$$aUnno:2021bqm
000453755 0247_ $$2inspire$$ainspire:1839785
000453755 0247_ $$2ISSN$$a0168-9002
000453755 0247_ $$2ISSN$$a1872-9576
000453755 0247_ $$2altmetric$$aaltmetric:95666818
000453755 0247_ $$2WOS$$aWOS:000611928700008
000453755 0247_ $$2openalex$$aopenalex:W3112730400
000453755 037__ $$aPUBDB-2021-00146
000453755 041__ $$aEnglish
000453755 082__ $$a530
000453755 1001_ $$0INSPIRE-00133014$$aUnno, Y.$$b0$$eCorresponding author
000453755 245__ $$aATLAS17LS – A large-format prototype silicon strip sensor for long-strip barrel section of ATLAS ITk strip detector
000453755 260__ $$aAmsterdam$$bNorth-Holland Publ. Co.$$c2021
000453755 3367_ $$2DRIVER$$aarticle
000453755 3367_ $$2DataCite$$aOutput Types/Journal article
000453755 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637677690_8856
000453755 3367_ $$2BibTeX$$aARTICLE
000453755 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000453755 3367_ $$00$$2EndNote$$aJournal Article
000453755 500__ $$aWaiting for fulltext
000453755 520__ $$aThe ATLAS experiment is going to replace the current Inner Detector with an all new inner tracker (ITk) in the ATLAS detector for HL-LHC at CERN. Silicon strip detectors cover the outer layers of the barrel and the endcap sections. We have designed and fabricated a prototype single-sided n + -in-p AC-coupled silicon strip sensor for the outer barrel layer with long strips (LS), ATLAS17LS. It is of the maximum allowable size to fit in a 6-in. silicon wafer, with an outer dimension of 9.80 (width) × 9.76 (length) cm$^2$. The sensor features two rows of LS strip segments, 4.83 cm strip length per segment, a strip pitch of 75.5  μm , and a slim edge design. We have implemented technology for high voltage operation of up to 1000 V, with a good signal collection after irradiation fluence of 5.6 × 10$^{14}$ n$_{eq}$∕cm$^2$ at the end of HL-LHC operation. We had two objectives for the ATLAS17LS fabrication: qualification of the sensor design and fabrication quality, and providing an adequate number of the sensors for prototyping the building blocks of the strip detector. The sensors were fabricated in 3 batches by HPK with standard wafers from the foundry (320 $\mu m$  physical thickness). Additional 10 sensors were fabricated with a thinner active thickness of 240  $\mu m$ to investigate the influence of active thickness on charge collection. Another additional 5 sensors, with special passivation to investigate the influence of passivation on humidity sensitivity. The visual inspection of fabricated sensors revealed an inadequacy that the designed metal width of 10 $\mu m$ was too narrow. The initial measurements by the vendor showed that the sensors fulfilled the specifications: onset voltages of Microdischarge $V_{MD}$ above the operation voltage $V_{OP}$ (700 V for the 1st and 2nd batches; 500 V for the 3rd batch, which has improved the yield), leakage currents of < 0.1 $\mu$A/cm$^2$ at $V_{OP}$, full depletion voltages $V_{FD}$ < 330 V, and rates of bad strips << 1%.
000453755 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000453755 588__ $$aDataset connected to CrossRef, INSPIRE
000453755 650_7 $$2INSPIRE$$a* Automatic Keywords *
000453755 650_7 $$2INSPIRE$$adimension: 9
000453755 650_7 $$2INSPIRE$$asilicon
000453755 650_7 $$2INSPIRE$$aATLAS
000453755 650_7 $$2INSPIRE$$atracking detector
000453755 650_7 $$2INSPIRE$$airradiation
000453755 650_7 $$2INSPIRE$$aCERN Lab
000453755 650_7 $$2autogen$$an-in-p
000453755 650_7 $$2autogen$$ap-type
000453755 650_7 $$2autogen$$aStrip
000453755 650_7 $$2autogen$$aSilicon
000453755 650_7 $$2autogen$$aRadiation tolerant
000453755 650_7 $$2autogen$$aHL-LHC
000453755 693__ $$0EXP:(DE-H253)LHC(machine)-20150101$$1EXP:(DE-588)4398783-7$$5EXP:(DE-H253)LHC(machine)-20150101$$aLHC$$eFacility (machine) LHC$$x0
000453755 7001_ $$0Y.Abo.1$$aAbo, Y.$$b1
000453755 7001_ $$0A.Affolder.2$$aAffolder, A.$$b2
000453755 7001_ $$aAllport, P.$$b3
000453755 7001_ $$0P:(DE-H253)PIP1014657$$aBloch, I.$$b4
000453755 7001_ $$aBlue, A.$$b5
000453755 7001_ $$0V.Fadeyev.2$$aFadeyev, V.$$b6
000453755 7001_ $$aFernandez-Tejero, J.$$b7
000453755 7001_ $$0P:(DE-H253)PIP1004563$$aGregor, I.$$b8
000453755 7001_ $$0C.Haber.1$$aHaber, C.$$b9
000453755 7001_ $$aHara, K.$$b10
000453755 7001_ $$0B.Hommels.1$$aHommels, B.$$b11
000453755 7001_ $$0Shintaro.Kamada.1$$aKamada, S.$$b12
000453755 7001_ $$0T.Koffas.1$$aKoffas, T.$$b13
000453755 7001_ $$aLacker, H.$$b14
000453755 7001_ $$00000-0002-4893-6778$$aMiyagawa, P. S.$$b15
000453755 7001_ $$0U.Parzefall.1$$aParzefall, U.$$b16
000453755 7001_ $$aSawyer, C. A.$$b17
000453755 7001_ $$00000-0003-0728-1805$$aUllan, M.$$b18
000453755 7001_ $$0K.Yamamura.1$$aYamamura, K.$$b19
000453755 7001_ $$aZhu, H.$$b20
000453755 773__ $$0PERI:(DE-600)1466532-3$$a10.1016/j.nima.2020.164928$$gVol. 989, p. 164928 -$$p164928$$tNuclear instruments & methods in physics research / A$$v989$$x0168-9002$$y2021
000453755 909CO $$ooai:bib-pubdb1.desy.de:453755$$pVDB
000453755 9101_ $$0I:(DE-HGF)0$$6INSPIRE-00133014$$aExternal Institute$$b0$$kExtern
000453755 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1014657$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000453755 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1004563$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000453755 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and Technologies$$vAccelerator Research and Development$$x0
000453755 9130_ $$0G:(DE-HGF)POF3-631$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator R & D$$x0
000453755 9141_ $$y2021
000453755 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-04$$wger
000453755 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL INSTRUM METH A : 2018$$d2020-09-04
000453755 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000453755 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000453755 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-04
000453755 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-04
000453755 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000453755 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000453755 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-04
000453755 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000453755 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000453755 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000453755 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-04
000453755 9201_ $$0I:(DE-H253)ZEU-DLAB-20130226$$kZEU-DLAB$$lbeauftragt von ZEU-SEK$$x0
000453755 980__ $$ajournal
000453755 980__ $$aVDB
000453755 980__ $$aI:(DE-H253)ZEU-DLAB-20130226
000453755 980__ $$aUNRESTRICTED