001     452445
005     20250729151014.0
024 7 _ |a 10.1016/j.addma.2020.101193
|2 doi
024 7 _ |a 2214-7810
|2 ISSN
024 7 _ |a 2214-8604
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2020-04680
|2 datacite_doi
024 7 _ |a WOS:000576649700005
|2 WOS
024 7 _ |a altmetric:127845858
|2 altmetric
024 7 _ |a openalex:W3021579606
|2 openalex
037 _ _ |a PUBDB-2020-04680
041 _ _ |a English
100 1 _ |a Duarte, Valdemar R.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Hot forging wire and arc additive manufacturing (HF-WAAM)
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606832095_17956
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, we propose a new variant of wire and arc additive manufacturing (WAAM) based on hot forging. During WAAM, the material is locally forged immediately after deposition, and in-situ viscoplastic deformation occurs at high temperatures. In the subsequent layer deposition, recrystallization of the previous solidification structure occurs that refines the microstructure. Because of its similarity with hot forging, this variant was named hot forging wire and arc additive manufacturing (HF-WAAM). A customized WAAM torch was developed, manufactured, and tested in the production of samples of AISI316L stainless steel. Forging forces of 17 N and 55 N were applied to plastically deform the material. The results showed that this new variant refines the solidification microstructure and reduce texture effects, as determined via high energy synchrotron X-ray diffraction experiments, without interrupting the additive manufacturing process. Mechanical characterization was performed and improvements on both yield strength and ultimate tensile strength were achieved. Furthermore, it was observed that HF-WAAM significantly affects porosity; pores formed during the process were closed by the hot forging process. Because deformation occurs at high temperatures, the forces involved are small, and the WAAM equipment does not have specific requirements with respect to stiffness, thereby allowing the incorporation of this new variant into conventional moving equipment such as multi-axis robots or 3-axis table used in WAAM.
536 _ _ |a 6G3 - PETRA III (POF3-622)
|0 G:(DE-HGF)POF3-6G3
|c POF3-622
|f POF III
|x 0
536 _ _ |a CALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the World (730872)
|0 G:(EU-Grant)730872
|c 730872
|f H2020-INFRAIA-2016-1
|x 1
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a PETRA III
|f PETRA Beamline P07
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P07-20150101
|6 EXP:(DE-H253)P-P07-20150101
|x 0
700 1 _ |a Rodrigues, Tiago A.
|0 P:(DE-H253)PIP1086036
|b 1
700 1 _ |a Schell, N.
|0 P:(DE-H253)PIP1005745
|b 2
700 1 _ |a Miranda, R. M.
|b 3
700 1 _ |a Oliveira, J. P.
|0 P:(DE-H253)PIP1018061
|b 4
700 1 _ |a Santos, Telmo G.
|b 5
773 _ _ |a 10.1016/j.addma.2020.101193
|g Vol. 35, p. 101193 -
|0 PERI:(DE-600)2777285-8
|p 101193
|t Additive manufacturing
|v 35
|y 2020
|x 2214-8604
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/452445/files/1-s2.0-S2214860420305650-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://bib-pubdb1.desy.de/record/452445/files/1-s2.0-S2214860420305650-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://bib-pubdb1.desy.de/record/452445/files/1-s2.0-S2214860420305650-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://bib-pubdb1.desy.de/record/452445/files/1-s2.0-S2214860420305650-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://bib-pubdb1.desy.de/record/452445/files/1-s2.0-S2214860420305650-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/452445/files/1-s2.0-S2214860420305650-main.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:452445
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1086036
910 1 _ |a Helmholtz-Zentrum Geesthacht
|0 I:(DE-588b)16087541-9
|k HZG
|b 2
|6 P:(DE-H253)PIP1005745
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1018061
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-622
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Research on Matter with Brilliant Light Sources
|9 G:(DE-HGF)POF3-6G3
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADDIT MANUF : 2018
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADDIT MANUF : 2018
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)HZG-20120731
|k HZG
|l Zentrum für Material- und Küstenforschung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)HZG-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21