001     442330
005     20250716152059.0
024 7 _ |a 10.1088/1361-6463/ab8fdc
|2 doi
024 7 _ |a 0022-3727
|2 ISSN
024 7 _ |a 0262-8171
|2 ISSN
024 7 _ |a 0508-3443
|2 ISSN
024 7 _ |a 1361-6463
|2 ISSN
024 7 _ |a 2057-7656
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2020-02998
|2 datacite_doi
024 7 _ |a WOS:000551773100001
|2 WOS
024 7 _ |2 openalex
|a openalex:W3099557209
037 _ _ |a PUBDB-2020-02998
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Krieft, Jan
|0 P:(DE-H253)PIP1082238
|b 0
|e Corresponding author
245 _ _ |a Advanced data analysis procedure for hard x-ray resonant magnetic reflectivity discussed for Pt thin film samples of various complexity
260 _ _ |a Bristol
|c 2020
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1663066707_23699
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a X-ray resonant magnetic reflectivity (XRMR) is a powerful method to determine the optical, structural and magnetic depth profiles of a variety of thin film systems. Here, we investigate samples of different complexity all measured at the Pt $\mathrm{L}_3$ absorption edge to determine the optimal procedure for the analysis of the experimental XRMR curves, especially for nontrivial bi- and multilayer samples that include differently bonded Pt from layer to layer. The software tool ReMagX is used to fit these data and model the magnetooptic depth profiles based on a highly adaptable layer stack which is modified to be a more precise and physically consistent representation of the real multilayer system. Various fitting algorithms, iterative optimization approaches and a detailed analysis of the asymmetry ratio features as well as χ 2 (goodness of fit) landscapes are utilized to improve the agreement between measurements and simulations. We present a step-by-step analysis procedure tailored to the Pt thin film systems to take advantage of the excellent magnetic sensitivity and depth resolution of XRMR.
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 0
536 _ _ |a 6G3 - PETRA III (POF3-622)
|0 G:(DE-HGF)POF3-6G3
|c POF3-622
|f POF III
|x 1
536 _ _ |a FS-Proposal: II-20190009 (II-20190009)
|0 G:(DE-H253)II-20190009
|c II-20190009
|x 2
536 _ _ |a FS-Proposal: II-20170016 (II-20170016)
|0 G:(DE-H253)II-20170016
|c II-20170016
|x 3
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a PETRA III
|f PETRA Beamline P09
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P09-20150101
|6 EXP:(DE-H253)P-P09-20150101
|x 0
700 1 _ |a Graulich, Dominik
|0 P:(DE-H253)PIP1084647
|b 1
700 1 _ |a Moskaltsova, Anastasiia
|0 P:(DE-H253)PIP1082240
|b 2
700 1 _ |a Bouchenoire, Laurence
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Francoual, Sonia
|0 P:(DE-H253)PIP1007683
|b 4
700 1 _ |a Kuschel, Timo
|0 P:(DE-H253)PIP1010096
|b 5
773 _ _ |a 10.1088/1361-6463/ab8fdc
|g Vol. 53, no. 37, p. 375004 -
|0 PERI:(DE-600)1472948-9
|n 37
|p 1-16
|t Journal of physics / D Applied physics
|v 53
|y 2020
|x 1361-6463
856 4 _ |u https://bib-pubdb1.desy.de/record/442330/files/PUBDB-2020-02998_Krieft_2020_J._Phys._D%20_Appl._Phys._53_375004.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/442330/files/PUBDB-2020-02998_Krieft_2020_J._Phys._D%20_Appl._Phys._53_375004.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/442330/files/PUBDB-2020-02998_Krieft_2020_J._Phys._D%20_Appl._Phys._53_375004.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/442330/files/PUBDB-2020-02998_Krieft_2020_J._Phys._D%20_Appl._Phys._53_375004.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/442330/files/PUBDB-2020-02998_Krieft_2020_J._Phys._D%20_Appl._Phys._53_375004.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/442330/files/PUBDB-2020-02998_Krieft_2020_J._Phys._D%20_Appl._Phys._53_375004.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:442330
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1082238
910 1 _ |a Center for Spinelectronic Materials and Devices, Department of Physics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-H253)PIP1082238
910 1 _ |a Center for Spinelectronic Materials and Devices, Department of Physics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, German
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-H253)PIP1084647
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1082240
910 1 _ |a Center for Spinelectronic Materials and Devices, Department of Physics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, German
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-H253)PIP1082240
910 1 _ |a XMaS, The UK-CRG, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble CEDEX 9, France
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE, United Kingdom
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1007683
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1010096
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-622
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Research on Matter with Brilliant Light Sources
|9 G:(DE-HGF)POF3-6G3
|x 1
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-02-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS D APPL PHYS : 2018
|d 2020-02-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-S-20190712
|k FS-PET-S
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PET-S-20190712
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21