| Home > Publications database > Advanced data analysis procedure for hard x-ray resonant magnetic reflectivity discussed for Pt thin film samples of various complexity > print |
| 001 | 442330 | ||
| 005 | 20250716152059.0 | ||
| 024 | 7 | _ | |a 10.1088/1361-6463/ab8fdc |2 doi |
| 024 | 7 | _ | |a 0022-3727 |2 ISSN |
| 024 | 7 | _ | |a 0262-8171 |2 ISSN |
| 024 | 7 | _ | |a 0508-3443 |2 ISSN |
| 024 | 7 | _ | |a 1361-6463 |2 ISSN |
| 024 | 7 | _ | |a 2057-7656 |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2020-02998 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:000551773100001 |2 WOS |
| 024 | 7 | _ | |2 openalex |a openalex:W3099557209 |
| 037 | _ | _ | |a PUBDB-2020-02998 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Krieft, Jan |0 P:(DE-H253)PIP1082238 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Advanced data analysis procedure for hard x-ray resonant magnetic reflectivity discussed for Pt thin film samples of various complexity |
| 260 | _ | _ | |a Bristol |c 2020 |b IOP Publ. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1663066707_23699 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a X-ray resonant magnetic reflectivity (XRMR) is a powerful method to determine the optical, structural and magnetic depth profiles of a variety of thin film systems. Here, we investigate samples of different complexity all measured at the Pt $\mathrm{L}_3$ absorption edge to determine the optimal procedure for the analysis of the experimental XRMR curves, especially for nontrivial bi- and multilayer samples that include differently bonded Pt from layer to layer. The software tool ReMagX is used to fit these data and model the magnetooptic depth profiles based on a highly adaptable layer stack which is modified to be a more precise and physically consistent representation of the real multilayer system. Various fitting algorithms, iterative optimization approaches and a detailed analysis of the asymmetry ratio features as well as χ 2 (goodness of fit) landscapes are utilized to improve the agreement between measurements and simulations. We present a step-by-step analysis procedure tailored to the Pt thin film systems to take advantage of the excellent magnetic sensitivity and depth resolution of XRMR. |
| 536 | _ | _ | |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621) |0 G:(DE-HGF)POF3-6212 |c POF3-621 |f POF III |x 0 |
| 536 | _ | _ | |a 6G3 - PETRA III (POF3-622) |0 G:(DE-HGF)POF3-6G3 |c POF3-622 |f POF III |x 1 |
| 536 | _ | _ | |a FS-Proposal: II-20190009 (II-20190009) |0 G:(DE-H253)II-20190009 |c II-20190009 |x 2 |
| 536 | _ | _ | |a FS-Proposal: II-20170016 (II-20170016) |0 G:(DE-H253)II-20170016 |c II-20170016 |x 3 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 693 | _ | _ | |a PETRA III |f PETRA Beamline P09 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P09-20150101 |6 EXP:(DE-H253)P-P09-20150101 |x 0 |
| 700 | 1 | _ | |a Graulich, Dominik |0 P:(DE-H253)PIP1084647 |b 1 |
| 700 | 1 | _ | |a Moskaltsova, Anastasiia |0 P:(DE-H253)PIP1082240 |b 2 |
| 700 | 1 | _ | |a Bouchenoire, Laurence |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Francoual, Sonia |0 P:(DE-H253)PIP1007683 |b 4 |
| 700 | 1 | _ | |a Kuschel, Timo |0 P:(DE-H253)PIP1010096 |b 5 |
| 773 | _ | _ | |a 10.1088/1361-6463/ab8fdc |g Vol. 53, no. 37, p. 375004 - |0 PERI:(DE-600)1472948-9 |n 37 |p 1-16 |t Journal of physics / D Applied physics |v 53 |y 2020 |x 1361-6463 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/442330/files/PUBDB-2020-02998_Krieft_2020_J._Phys._D%20_Appl._Phys._53_375004.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/442330/files/PUBDB-2020-02998_Krieft_2020_J._Phys._D%20_Appl._Phys._53_375004.gif?subformat=icon |x icon |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/442330/files/PUBDB-2020-02998_Krieft_2020_J._Phys._D%20_Appl._Phys._53_375004.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/442330/files/PUBDB-2020-02998_Krieft_2020_J._Phys._D%20_Appl._Phys._53_375004.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/442330/files/PUBDB-2020-02998_Krieft_2020_J._Phys._D%20_Appl._Phys._53_375004.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/442330/files/PUBDB-2020-02998_Krieft_2020_J._Phys._D%20_Appl._Phys._53_375004.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:442330 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1082238 |
| 910 | 1 | _ | |a Center for Spinelectronic Materials and Devices, Department of Physics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany |0 I:(DE-HGF)0 |b 0 |6 P:(DE-H253)PIP1082238 |
| 910 | 1 | _ | |a Center for Spinelectronic Materials and Devices, Department of Physics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, German |0 I:(DE-HGF)0 |b 1 |6 P:(DE-H253)PIP1084647 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1082240 |
| 910 | 1 | _ | |a Center for Spinelectronic Materials and Devices, Department of Physics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, German |0 I:(DE-HGF)0 |b 2 |6 P:(DE-H253)PIP1082240 |
| 910 | 1 | _ | |a XMaS, The UK-CRG, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble CEDEX 9, France |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE, United Kingdom |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1007683 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1010096 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6212 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-622 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v Facility topic: Research on Matter with Brilliant Light Sources |9 G:(DE-HGF)POF3-6G3 |x 1 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-02-27 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-02-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-27 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-02-27 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-27 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-02-27 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-02-27 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PHYS D APPL PHYS : 2018 |d 2020-02-27 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-02-27 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-27 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-02-27 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-27 |
| 920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-PET-S-20190712 |k FS-PET-S |l Experimentebetreuung PETRA III |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
| 980 | _ | _ | |a I:(DE-H253)FS-PET-S-20190712 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|