000440957 001__ 440957
000440957 005__ 20231108210746.0
000440957 0247_ $$2datacite_doi$$a10.3204/PUBDB-2020-02268
000440957 037__ $$aPUBDB-2020-02268
000440957 041__ $$aEnglish
000440957 088__ $$2DESY$$aDESY-THESIS-2020-014
000440957 1001_ $$0P:(DE-H253)PIP1021838$$aVelyka, Anastasiia$$b0$$eCorresponding author$$gfemale
000440957 245__ $$aConcept and Development of Enhanced Lateral Drift (ELAD) Sensors$$f2016-12-01 - 2020-09-30
000440957 260__ $$aHamburg$$bVerlag Deutsches Elektronen-Synchrotron$$c2020
000440957 300__ $$a192
000440957 3367_ $$2DataCite$$aOutput Types/Dissertation
000440957 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000440957 3367_ $$2ORCID$$aDISSERTATION
000440957 3367_ $$2BibTeX$$aPHDTHESIS
000440957 3367_ $$02$$2EndNote$$aThesis
000440957 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1699451600_1820772
000440957 3367_ $$2DRIVER$$adoctoralThesis
000440957 4900_ $$aDESY-THESIS
000440957 502__ $$aDissertation, Universität Hamburg, 2019$$bDissertation$$cUniversität Hamburg$$d2019$$o2019-10-21
000440957 520__ $$aIn this dissertation the concept of a new type of silicon tracking sensor called Enhanced Lateral Drift (ELAD) sensor is presented. This technology is created to meet the requirements for future linear e+e− colliders vertex and tracking detectors. To date, there are two projects for future linear colliders, ILC and CLIC. The physics goals at both experiments demand a lightweight silicon vertex detector and a large area silicon tracker. A spatial resolution of a few micrometres and material budget less than two percent of a radiation length per layer are required.For the ELAD sensors the spatial resolution of the impact position of ionising particles is improved by a dedicated charge sharing mechanism, which is achieved by an inhomogeneous electric field in the lateral direction in the sensor bulk. The inhomogeneous electric field is created by buried doping implants with a higher concentration with respect to the background concentration of the bulk.Electric field simulations based on Technology Computer-Aided Design (TCAD) have been carried out for 2D and 3D geometries as well as transient simulations with a traversing particle for the 2D. The electric field profiles have been further optimised regarding the resulting position resolution. The simulations show a strong dependence of the charge sharing mechanism on the concentrations of the buried implant. Optimal values for this concentration enable a nearly linear charge sharing between two neighbouring readout electrodes as a function of the impact position.To estimate the position resolution of an ELAD sensor, test beam simulations using the AllPix2 software have been performed applying the realistic electric field profiles from the TCAD simulations. In the AllPix2 simulations 2D and 3D electric fields have been used. Results of the geometry optimisation are shown realising an optimal charge sharing and hence position resolution. The position resolution of a few micrometers is expected by using deep implants.A description of the multi-layer production process is given. It represents a new production technique allowing for deep bulk engineering.
000440957 536__ $$0G:(DE-HGF)POF3-632$$a632 - Detector technology and systems (POF3-632)$$cPOF3-632$$fPOF III$$x0
000440957 536__ $$0G:(DE-HGF)2015_IFV-VH-GS-500$$aPHGS, VH-GS-500 - PIER Helmholtz Graduate School (2015_IFV-VH-GS-500)$$c2015_IFV-VH-GS-500$$x1
000440957 693__ $$0EXP:(DE-H253)LHC-Exp-CMS-20150101$$1EXP:(DE-588)4398783-7$$5EXP:(DE-H253)LHC-Exp-CMS-20150101$$aLHC$$eLHC: CMS$$x0
000440957 7001_ $$0P:(DE-H253)PIP1021853$$aJansen, Hendrik$$b1$$eThesis advisor
000440957 7001_ $$0P:(DE-H253)PIP1003350$$aGallo-Voss, Elisabetta$$b2$$eThesis advisor
000440957 8564_ $$uhttps://bib-pubdb1.desy.de/record/440957/files/ThesisAnastasiiaVelyka.pdf$$yOpenAccess
000440957 8564_ $$uhttps://bib-pubdb1.desy.de/record/440957/files/desy-thesis-20-014.title.pdf$$yOpenAccess
000440957 8564_ $$uhttps://bib-pubdb1.desy.de/record/440957/files/ThesisAnastasiiaVelyka.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000440957 8564_ $$uhttps://bib-pubdb1.desy.de/record/440957/files/desy-thesis-20-014.title.gif?subformat=icon$$xicon$$yOpenAccess
000440957 8564_ $$uhttps://bib-pubdb1.desy.de/record/440957/files/desy-thesis-20-014.title.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000440957 8564_ $$uhttps://bib-pubdb1.desy.de/record/440957/files/desy-thesis-20-014.title.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000440957 8564_ $$uhttps://bib-pubdb1.desy.de/record/440957/files/desy-thesis-20-014.title.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000440957 8564_ $$uhttps://bib-pubdb1.desy.de/record/440957/files/desy-thesis-20-014.title.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000440957 909CO $$ooai:bib-pubdb1.desy.de:440957$$pVDB$$popen_access$$popenaire$$pdnbdelivery$$pdriver
000440957 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021838$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000440957 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021853$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000440957 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003350$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000440957 9131_ $$0G:(DE-HGF)POF3-632$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vDetector technology and systems$$x0
000440957 9141_ $$y2020
000440957 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000440957 920__ $$lyes
000440957 9201_ $$0I:(DE-H253)CMS-20120731$$kCMS$$lLHC/CMS Experiment$$x0
000440957 980__ $$aphd
000440957 980__ $$aVDB
000440957 980__ $$abook
000440957 980__ $$aI:(DE-H253)CMS-20120731
000440957 980__ $$aUNRESTRICTED
000440957 9801_ $$aFullTexts