TY - JOUR
AU - Pandey, Suraj
AU - Bean, Richard
AU - Sato, Tokushi
AU - Poudyal, Ishwor
AU - Bielecki, Johan
AU - Cruz Villarreal, Jorvani
AU - Yefanov, Oleksandr
AU - Mariani, Valerio
AU - White, Thomas A.
AU - Kupitz, Christopher
AU - Hunter, Mark
AU - Abdellatif, Mohamed H.
AU - Bajt, Saša
AU - Bondar, Valerii
AU - Echelmeier, Austin
AU - Doppler, Diandra
AU - Emons, Moritz
AU - Frank, Matthias
AU - Fromme, Raimund
AU - Gevorkov, Yaroslav
AU - Giovanetti, Gabriele
AU - Jiang, Man
AU - Kim, Daihyun
AU - Kim, Yoonhee
AU - Kirkwood, Henry
AU - Klimovskaia, Anna
AU - Knoska, Juraj
AU - Koua, Faisal H. M.
AU - Letrun, Romain
AU - Lisova, Stella
AU - Maia, Luis
AU - Mazalova, Victoria
AU - Meza, Domingo
AU - Michelat, Thomas
AU - Ourmazd, Abbas
AU - Palmer, Guido
AU - Ramilli, Marco
AU - Schubert, Robin
AU - Schwander, Peter
AU - Silenzi, Alessandro
AU - Sztuk-Dambietz, Jolanta
AU - Tolstikova, Alexandra
AU - Chapman, Henry N.
AU - Ros, Alexandra
AU - Barty, Anton
AU - Fromme, Petra
AU - Mancuso, Adrian P.
AU - Schmidt, Marius
TI - Time-resolved serial femtosecond crystallography at the European XFEL
JO - Nature methods
VL - 2020
IS - 17
SN - 1548-7091
CY - London [u.a.]
PB - Nature Publishing Group
M1 - PUBDB-2019-04293
SP - 73–78
PY - 2019
N1 - © Springer Nature Limited
AB - The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution. Time-resolved crystallographic investigations on biological macromolecules belong to an important class of experiments that explore fundamental and functional structural displacements in these molecules. Due to the unusual MHz X-ray pulse structure at the EuXFEL, these experiments are challenging. Here, we demonstrate how a biological reaction can be followed on ultrafast timescales at the EuXFEL. We investigate the picosecond time range in the photocycle of photoactive yellow protein (PYP) with MHz X-ray pulse rates. We show that difference electron density maps of excellent quality can be obtained. The results connect the previously explored femtosecond PYP dynamics to timescales accessible at synchrotrons. This opens the door to a wide range of time-resolved studies at the EuXFEL.
LB - PUB:(DE-HGF)16
C6 - pmid:31740816
UR - <Go to ISI:>//WOS:000508582900038
DO - DOI:10.1038/s41592-019-0628-z
UR - https://bib-pubdb1.desy.de/record/427972
ER -