001     400135
005     20250717101512.0
024 7 _ |a 10.1038/s41598-018-20899-9
|2 doi
024 7 _ |a 10.3204/PUBDB-2018-01143
|2 datacite_doi
024 7 _ |a pmid:29416086
|2 pmid
024 7 _ |a WOS:000424318700013
|2 WOS
024 7 _ |a altmetric:50589812
|2 altmetric
024 7 _ |a openalex:W2794370262
|2 openalex
037 _ _ |a PUBDB-2018-01143
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Lee, Dan Bi
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Supersaturation-controlled microcrystallization and visualization analysis for serial femtosecond crystallography
260 _ _ |a London
|c 2018
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1520411086_32688
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Time-resolved serial femtosecond crystallography with X-ray free electron laser (XFEL) holds the potential to view fast reactions occurring at near-physiological temperature. However, production and characterization of homogeneous micron-sized protein crystals at high density remain a bottleneck, due to the lack of the necessary equipments in ordinary laboratories. We describe here supersaturation-controlled microcrystallization and visualization and analysis tools that can be easily used in any laboratory. The microcrystallization conditions of the influenza virus hemagglutinin were initially obtained with low reproducibility, which was improved by employing a rapid evaporation of hanging drops. Supersaturation-controlled microcrystallization was then developed in a vapor diffusion mode, where supersaturation was induced by evaporation in hanging drops sequentially for durations ranging from 30 sec to 3 min, depending on the protein. It was applied successfully to the microcrystal formation of lysozyme, ferritin and hemagglutinin with high density. Moreover, visualization and analysis tools were developed to characterize the microcrystals observed by light microscopy. The size and density distributions of microcrystals analyzed by the tools were found to be consistent with the results of manual analysis, further validated by high-resolution microscopic analyses. Our supersaturation-controlled microcrystallization and visualization and analysis tools will provide universal access to successful XFEL studies.
536 _ _ |a 6215 - Soft Matter, Health and Life Sciences (POF3-621)
|0 G:(DE-HGF)POF3-6215
|c POF3-621
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
693 _ _ |0 EXP:(DE-H253)CFEL-Exp-20150101
|5 EXP:(DE-H253)CFEL-Exp-20150101
|e Experiments at CFEL
|x 0
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 1
700 1 _ |a Kim, Jong-Min
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Seok, Jong Hyeon
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lee, Ji-Hye
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jo, Jae Deok
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mun, Ji Young
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Conrad, Chelsie
|0 P:(DE-H253)PIP1027131
|b 6
700 1 _ |a Coe, Jesse
|0 0000-0002-5544-320X
|b 7
700 1 _ |a Nelson, Gerrett
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hogue, Brenda
|0 P:(DE-H253)PIP1030101
|b 9
700 1 _ |a White, Thomas A.
|0 P:(DE-H253)PIP1010779
|b 10
700 1 _ |a Zatsepin, Nadia
|0 P:(DE-H253)PIP1014437
|b 11
700 1 _ |a Weierstall, Uwe
|0 P:(DE-H253)PIP1008265
|b 12
700 1 _ |a Barty, Anton
|0 P:(DE-H253)PIP1008245
|b 13
700 1 _ |a Chapman, Henry
|0 P:(DE-H253)PIP1006324
|b 14
700 1 _ |a Fromme, Petra
|0 P:(DE-H253)PIP1023170
|b 15
700 1 _ |a Spence, John
|0 P:(DE-H253)PIP1008263
|b 16
700 1 _ |a Chung, Mi Sook
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Oh, Chang-Hyun
|0 P:(DE-HGF)0
|b 18
|e Corresponding author
700 1 _ |a Kim, Kyung Hyun
|0 0000-0002-4033-3999
|b 19
|e Corresponding author
773 _ _ |a 10.1038/s41598-018-20899-9
|g Vol. 8, no. 1, p. 2541
|0 PERI:(DE-600)2615211-3
|n 1
|p 2541
|t Scientific reports
|v 8
|y 2018
|x 2045-2322
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/400135/files/SciRep18_SCM.pdf
856 4 _ |y OpenAccess
|x icon
|u https://bib-pubdb1.desy.de/record/400135/files/SciRep18_SCM.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://bib-pubdb1.desy.de/record/400135/files/SciRep18_SCM.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://bib-pubdb1.desy.de/record/400135/files/SciRep18_SCM.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://bib-pubdb1.desy.de/record/400135/files/SciRep18_SCM.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/400135/files/SciRep18_SCM.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:400135
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1027131
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1030101
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1010779
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 10
|6 P:(DE-H253)PIP1010779
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1014437
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1008265
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1008245
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 13
|6 P:(DE-H253)PIP1008245
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 14
|6 P:(DE-H253)PIP1006324
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 14
|6 P:(DE-H253)PIP1006324
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1023170
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-H253)PIP1008263
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-H253)CFEL-I-20161114
|k CFEL-I
|l FS-CFEL-1 (Group Leader: Henry Chapman)
|x 0
920 1 _ |0 I:(DE-H253)FS-CFEL-1-20120731
|k FS-CFEL-1
|l CFEL-Coherent X-Ray Imaging
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CFEL-I-20161114
980 _ _ |a I:(DE-H253)FS-CFEL-1-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21