http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems

 ;  ;  ;  ;

2016
John Wiley & Sons Inc New York
ISBN: 9781118851562, 1118851560

New York : John Wiley & Sons Inc, Wiley - IEEE : 1, 416 S ()  GO

This record in other databases:

Abstract: Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission.Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids.Key features:* Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland.* Comprehensive explanation of MMC application in HVDC and MTDC transmission technology.* Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore.* Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals.* A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website.This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology

Keyword(s): Windenergie ; Energy ; electric power systems ; Power Electronics ; Leistungselektronik ; Elektrische Energietechnik ; Elektrotechnik u. Elektronik ; Energie ; Wind Energy ; HGÜ ; Hochspannungs-Gleichstrom-Übertragung ; Electrical & Electronics Engineering

Classification:
HH Book proposal PDA 1 on request only Find similar...
Content:
  • Preface xiiiAcknowledgements xvAbout the Companion Website xviiNomenclature xixIntroduction 11 Introduction to Modular Multilevel Converters 71.1 Introduction 71.2 The Two-Level Voltage Source Converter 91.2.1 Topology and Basic Function 91.2.2 Steady-State Operation 121.3 Benefits of Multilevel Converters 151.4 Early Multilevel Converters 171.4.1 Diode Clamped Converters 171.4.2 Flying Capacitor Converters 201.5 Cascaded Multilevel Converters 231.5.1 Submodules and Submodule Strings 231.5.2 Modular Multilevel Converter with Half-Bridge Submodules 281.5.3 Other Cascaded Converter Topologies 431.6 Summary 57References 582 Main-Circuit Design 602.1 Introduction 602.2 Properties and Design Choices of Power Semiconductor Devices for High-Power Applications 612.2.1 Historical Overview of the Development Toward Modern Power Semiconductors 612.2.2 Basic Conduction Properties of Power Semiconductor Devices 642.2.3 P-N Junctions for Blocking 652.2.4 Conduction Properties and the Need for-
  • Carrier Injection 672.2.5 Switching Properties 722.2.6 Packaging 732.2.7 Reliability of Power Semiconductor Devices 802.2.8 Silicon Carbide Power Devices 842.3 Medium-Voltage Capacitors for Submodules 922.3.1 Design and Fabrication 932.3.2 Self-Healing and Reliability 952.4 Arm Inductors 962.5 Submodule Configurations 982.5.1 Existing Half-Bridge Submodule Realizations 992.5.2 Clamped Single-Submodule 1042.5.3 Clamped Double-Submodule 1052.5.4 Unipolar-Voltage Full-Bridge Submodule 1062.5.5 Five-Level Cross-Connected Submodule 1072.5.6 Three-Level Cross-Connected Submodule 1072.5.7 Double Submodule 1082.5.8 Semi-Full-Bridge Submodule 1092.5.9 Soft-Switching Submodules 1102.6 Choice of Main-Circuit Parameters 1122.6.1 Main Input Data 1122.6.2 Choice of Power Semiconductor Devices 1142.6.3 Choice of the Number of Submodules 1152.6.4 Choice of Submodule Capacitance 1172.6.5 Choice of Arm Inductance 1172.7 Handling of Redundant and Faulty Submodules 1182.7.1 Method 1 1182.7.2 Method 2-
  • 1192.7.3 Comparison of Method 1 and Method 2 1202.7.4 Handling of Redundancy Using IGBT Stacks 1212.8 Auxiliary Power Supplies for Submodules 1212.8.1 Using the Submodule Capacitor as Power Source 1212.8.2 Power Supplies with High-Voltage Inputs 1232.8.3 The Tapped-Inductor Buck Converter 1252.9 Start-Up Procedures 1262.10 Summary 126References 1273 Dynamics and Control 1333.1 Introduction 1333.2 Fundamentals 1343.2.1 Arms 1353.2.2 Submodules 1353.2.3 AC Bus 1363.2.4 DC Bus 1363.2.5 Currents 1363.3 Converter Operating Principle and Averaged Dynamic Model 1373.3.1 Dynamic Relations for the Currents 1373.3.2 Selection of the Mean Sum Capacitor Voltages 1373.3.3 Averaging Principle 1383.3.4 Ideal Selection of the Insertion Indices 1403.3.5 Sum-Capacitor-Voltage Ripples 1413.3.6 Maximum Output Voltage 1443.3.7 DC-Bus Dynamics 1463.3.8 Time Delays 1483.4 Per-Phase Output-Current Control 1483.4.1 Tracking of a Sinusoidal Reference Using a PI Controller 1493.4.2 Resonant Filters and-
  • Generalized Integrators 1503.4.3 Tracking of a Sinusoidal Reference Using a PR Controller 1523.4.4 Parameter Selection for a PR Current Controller 1533.4.5 Output-Current Controller Design 1573.5 Arm-Balancing (Internal) Control 1613.5.1 Circulating-Current Control 1633.5.2 Direct Voltage Control 1633.5.3 Closed-Loop Voltage Control 1663.5.4 Open-Loop Voltage Control 1683.5.5 Hybrid Voltage Control 1723.6 Three-Phase Systems 1753.6.1 Balanced Three-Phase Systems 1753.6.2 Imbalanced Three-Phase Systems 1753.6.3 Instantaneous Active Power 1763.6.4 Wye (Y) and Delta ( ) Connections 1773.6.5 Harmonics 1773.6.6 Space Vectors 1783.6.7 Instantaneous Power 1823.6.8 Selection of the Space-Vector Scaling Constant 1843.7 Vector Output-Current Control 1843.7.1 PR (PI) Controller 1863.7.2 Reference-Vector Saturation 1883.7.3 Transformations 1883.7.4 Zero-Sequence Injection 1903.8 Higher-Level Control 1923.8.1 Phase-Locked Loop 1933.8.2 Open-Loop Active- and Reactive-Power Control 1973.8.3-
  • DC-Bus-Voltage Control 1983.8.4 Power-Synchronization Control 2003.9 Control Architectures 2073.9.1 Communication Network 2093.9.2 Fault-Tolerant Communication Networks 2113.10 Summary 212References 2124 Control under Unbalanced Grid Conditions 2144.1 Introduction 2144.2 Grid Requirements 2144.3 Shortcomings of Conventional Vector Control 2154.3.1 PLL with Notch Filter 2164.4 Positive/Negative-Sequence Extraction 2194.4.1 DDSRF-PNSE 2194.4.2 DSOGI-PNSE 2214.5 Injection Reference Strategy 2234.5.1 PSI with PSI-LVRT Compliance 2254.5.2 MSI-LVRT Mixed Positive- and Negative-Sequence Injection with both PSI-LVRT and NSI-LVRT Compliance 2264.6 Component-Based Vector Output-Current Control 2264.6.1 DDSRF-PNSE-Based Control 2264.6.2 DSOGI-PNSE-Based Control 2274.7 Summary 228References 2315 Modulation and Submodule Energy Balancing 2325.1 Introduction 2325.2 Fundamentals of Pulse-Width Modulation 2335.2.1 Basic Concepts 2335.2.2 Performance of Modulation Methods 2345.2.3 Reference-
  • Third-Harmonic Injection in Three-Phase Systems 2355.3 Carrier-Based Modulation Methods 2365.3.1 Two-Level Carrier-Based Modulation 2365.3.2 Analysis by Fourier Series Expansion 2375.3.3 Polyphase Systems 2425.4 Multilevel Carrier-Based Modulation 2435.4.1 Phase-Shifted Carriers 2435.4.2 Level-Shifted Carriers 2505.5 Nearest-Level Control 2525.6 Submodule Energy Balancing Methods 2565.6.1 Submodule Sorting 2565.6.2 Predictive Sorting 2595.6.3 Tolerance Band Methods 2635.6.4 Individual Submodule-Capacitor-Voltage Control 2695.7 Summary 270References 2716 Modeling and Simulation 2726.1 Introduction 2726.2 Leg-Level Averaged (LLA) Model 2746.3 Arm-Level Averaged (ALA) Model 2756.3.1 Arm-Level Averaged Model with Blocking Capability (ALA-BLK) 2766.4 Submodule-Level Averaged (SLA) Model 2786.4.1 Vectorized Simulation Models 2796.5 Submodule-Level Switched (SLS) Model 2806.5.1 Multiple Phase-Shifted Carrier (PSC) Simulation 2816.6 Summary 281References 2827 Design and Optimization of-
  • MMC-HVDC Schemes for Offshore Wind-Power Plant Application 2837.1 Introduction 2837.2 The Influence of Regulatory Frameworks on the Development Strategies for Offshore HVDC Schemes 2847.2.1 UK's Regulatory Framework for Offshore Transmission Assets 2857.2.2 Germany's Regulatory Framework for Offshore Transmission Assets 2867.3 Impact of Regulatory Frameworks on the Functional Requirements and Design of Offshore HVDC Terminals 2867.4 Components of an Offshore MMC-HVDC Converter 2877.4.1 Offshore HVDC Converter Transformer 2897.4.2 Phase Reactors and DC Pole Reactors 2907.4.3 Converter Valve Hall 2927.4.4 Control and Protection Systems 2937.4.5 AC and DC Switchyards 2937.4.6 Auxiliary Systems 2937.5 Offshore Platform Concepts 2947.5.1 Accommodation Offshore 2957.6 Onshore HVDC Converter 2957.6.1 Onshore DC Choppers/Dynamic Brakers 2967.6.2 Inrush Current Limiter Resistors 2977.7 Recommended System Studies for the Development and Integration of an Offshore HVDC Link to a WPP 2987.7.1-
  • Conceptual and Feasibility Studies with Steady-State Load Flow 2997.7.2 Short-Circuit Analysis 3017.7.3 Dynamic System Performance Analysis 3017.7.4 Transient Stability Analysis 3017.7.5 Harmonic Analysis 3027.7.6 Ferroresonance 3027.8 Summary 303References 3038 MMC-HVDC Standards and Commissioning Procedures 3058.1 Introduction 3058.2 CIGRE and IEC Activities for the Standardization of MMC-HVDC Technology 3068.2.1 Hierarchy of Available and Applicable Codes,-
  • Standards and Best Practice Recommendations for MMC-HVDC Projects 3098.3 MMC-HVDC Commissioning and Factory and Site Acceptance Tests 3098.3.1 Pre-Commissioning 3118.3.2 Offsite Commissioning Tests or Factory Acceptance Tests 3128.3.3 Onsite Testing and Site Acceptance Tests 3138.3.4 Onsite Energizing Tests 3148.4 Summary 317References 3179 Control and Protection of MMC-HVDC under AC and DC Network Fault Contingencies 3189.1 Introduction 3189.2 Two-Level VSC-HVDC Fault Characteristics under Unbalanced AC Network Contingency 3199.2.1 Two-Level VSC-HVDC Fault Characteristics under DC Fault Contingency 3219.3 MMC-HVDC Fault Characteristics under Unbalanced AC Network Contingency 3229.3.1 Internal AC Bus Fault Conditions at the Secondary Side of the Converter Transformer 3239.4 DC Pole-to-Ground Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC 3259.4.1 DC Pole-to-Pole Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC 3259.5 MMC-HVDC Component Failures 3279.5.1-
  • Submodule Semiconductor Failures 3279.5.2 Submodule Capacitor Failure 3289.5.3 Phase Reactor Failure 3299.5.4 Converter Transformer Failure 3299.6 MMC-HVDC Protection Systems 3299.6.1 AC-Side Protections 3319.6.2 DC-Side Protections 3319.6.3 DC-Bus Undervoltage, Overvoltage Protection 3319.6.4 DC-Bus Voltage Unbalance Protection 3329.6.5 DC-Bus Overcurrent Protection 3329.6.6 DC Bus Differential Protection 3329.6.7 Valve and Submodule Protection 3329.6.8 Transformer Protection 3339.6.9 Primary Converter AC Breaker Failure Protection 3339.7 Summary 333References 33410 MMC-HVDC Transmission Technology and MTDC Networks 33610.1 Introduction 33610.2 LCC-HVDC Transmission Technology 33610.3 Two-Level VSC-HVDC Transmission Technology 33810.3.1 Comparison of VSC-HVDC vs.-
  • LCC-HVDC Technology 33810.4 Modular Multilevel HVDC Transmission Technology 33910.4.1 Monopolar Asymmetric MMC-HVDC Scheme Configuration 34010.4.2 Symmetrical Monopole MMC-HVDC Scheme Configuration 34010.4.3 Bipolar HVDC Scheme Configuration 34110.4.4 Homopolar HVDC Scheme Configuration 34210.4.5 Back-to-Back HVDC Scheme Configuration 34210.5 The European HVDC Projects and MTDC Network Perspectives 34310.5.1 The North Sea Countries Offshore Grid Initiative (NSCOGI) 34310.5.2 Large Integration of Offshore Wind Farms and Creation of the Offshore DC Grid 34410.6 Multi-Terminal HVDC Configurations 34510.6.1 Series-Connected MTDC Network 34610.6.2 Parallel-Connected MTDC Network 34610.6.3 Meshed MTDC Networks 34710.7 DC Load Flow Control in MTDC Networks 34810.8 DC Grid Control Strategies 34910.8.1 Dynami


Click to display QR Code for this record

The record appears in these collections:
Document types > Books > Books
Library catalogue > Book proposals
Public records

 Record created 2017-08-03, last modified 2017-08-03



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)