001     288084
005     20250730113619.0
024 7 _ |a 10.1063/1.4930002
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1931-9401
|2 ISSN
024 7 _ |a WOS:000362564300006
|2 WOS
024 7 _ |a altmetric:6843052
|2 altmetric
024 7 _ |a openalex:W1941620090
|2 openalex
037 _ _ |a PUBDB-2015-04796
082 _ _ |a 530
100 1 _ |a Schnohr, Claudia
|0 P:(DE-H253)PIP1011763
|b 0
|e Corresponding author
245 _ _ |a Compound semiconductor alloys: From atomic-scale structure to bandgap bowing
260 _ _ |a New York, NY
|c 2015
|b AIP
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a article
|2 DRIVER
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1447941084_2806
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
500 _ _ |a (c) AIP Publishing LLC
520 _ _ |a Compound semiconductor alloys such as In$_{x}$Ga$_{1-x}$As, GaAsxP$_{1-x}$, or CuIn$_{x}$Ga$_{1-x}$Se$_{2}$ are increasingly employed in numerous electronic, optoelectronic, and photonic devices due to the possibility of tuning their properties over a wide parameter range simply by adjusting the alloy composition. Interestingly, the material properties are also determined by the atomic-scale structure of the alloys on the subnanometer scale. These local atomic arrangements exhibit a striking deviation from the average crystallographic structure featuring different element-specific bond lengths, pronounced bond angle relaxation and severe atomic displacements. The latter, in particular, have a strong influence on the band gap energy and give rise to a significant contribution to the experimentally observed band gap bowing. This article therefore reviews experimental and theoretical studies of the atomic-scale structure of III-V and II-VI zincblende alloys and I-III-VI$_{2}$ chalcopyrite alloys and explains the characteristic findings in terms of bond length and bond angle relaxation. Different approaches to describe and predict the band gap bowing are presented and the correlation with local structural parameters is discussed in detail. The article further highlights both similarities and differences between the cubic zincblende alloys and the more complex chalcopyrite alloys and demonstrates that similar effects can also be expected for other tetrahedrally coordinated semiconductors of the adamantine structural family.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
536 _ _ |a FS-Proposal: I-20110135 (I-20110135)
|0 G:(DE-H253)I-20110135
|c I-20110135
|x 1
536 _ _ |a FS-Proposal: I-20100027 (I-20100027)
|0 G:(DE-H253)I-20100027
|c I-20100027
|x 2
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a DORIS III
|f DORIS Beamline C
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-C-20150101
|6 EXP:(DE-H253)D-C-20150101
|x 0
773 _ _ |a 10.1063/1.4930002
|g Vol. 2, no. 3, p. 031304 -
|0 PERI:(DE-600)2265524-4
|n 3
|p 031304
|t Applied physics reviews
|v 2
|y 2015
|x 1931-9401
856 4 _ |u https://bib-pubdb1.desy.de/record/288084/files/1.4930002.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/288084/files/1.4930002.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/288084/files/1.4930002.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/288084/files/1.4930002.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/288084/files/1.4930002.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/288084/files/1.4930002.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:288084
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k >Extern
|b 0
|6 P:(DE-H253)PIP1011763
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS REV : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21