Home > Publications database > Linear Acoustic Waves Induced in a Cylindrical Solid Target by Particle Beam in $e^{-} - e^{+}$ Colliders |
Report/Dissertation / PhD Thesis | PUBDB-2015-02211 |
2015
Verlag Deutsches Elektronen-Synchrotron
Hamburg
This record in other databases:
Please use a persistent id in citations: doi:10.3204/DESY-THESIS-2015-020
Report No.: DESY-THESIS-2015-020
Abstract: A future high energy lepton collider will demand high luminosities to achieve its physics goals. For the electron-positron linear collider, the generation of the desired amount of positrons is a non-trivial problem: the positron production target has to survive huge amounts of energy deposited by the bombardment of intense beams of electrons or photons. This causes a rapid increase of the temperature in the target within a very short time period. The resulting deformation due to the induced pressure waves can substantially shorten the operating life-span of the target material. In this work, we study linear effects of induced stress in a solid target through pressure acoustic waves using continuum mechanics. We derived analytical solutions for different cases and imposed different boundary conditions. The application of the model to the SLC positron target gave us the results which are in agreement with the existing literature. In a similar manner, we investigated the effect of single and multiple photon bunches on the conversion target for ILC.
![]() |
The record appears in these collections: |