2025-04-28 14:15 |
Detailed record - Similar records
|
2025-04-28 11:40 |
[PUBDB-2025-01489]
Journal Article
Uykur, E. ; Janson, O. ; Ginga, V. A. ; et al
Tunable Dirac nodal line in orthorhombic RuO$_2$
The pressure evolution of RuO$_2$ is studied using single-crystal x-ray diffraction in a diamond anvil cell, combined with ab initio band-structure calculations. The tetragonal rutile structure transforms into the orthorhombic CaCl$_2$-type structure above 13 GPa under quasihydrostatic pressure conditions. [...]
OpenAccess: PDF PDF (PDFA);
Detailed record - Similar records
|
2025-04-28 11:17 |
Detailed record - Similar records
|
2025-04-28 11:14 |
Detailed record - Similar records
|
2025-04-27 01:37 |
Detailed record - Similar records
|
2025-04-25 13:46 |
Detailed record - Similar records
|
2025-04-25 12:03 |
Detailed record - Similar records
|
2025-04-25 11:55 |
Detailed record - Similar records
|
2025-04-24 14:25 |
[PUBDB-2025-01477]
Journal Article
Adachi, I. ; Aggarwal, L. ; Akopov, N. ; et al
Observations of the singly Cabibbo-suppressed decays $ {\Xi}_c^{+}\to p{K}_S^0 $, $ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $, and $ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $ at Belle and Belle II
[Belle II Preprint 2024-028; KEK Preprint 2024-29; arXiv:2412.10677]
Using data samples of 983.0 fb$^{−1}$ and 427.9 fb$^{−1}$ accumulated with the Belle and Belle II detectors operating at the KEKB and SuperKEKB asymmetric-energy e$^{+}$e$^{−}$ colliders, singly Cabibbo-suppressed decays $ {\Xi}_c^{+}\to p{K}_S^0 $, $ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $, and $ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $ are observed for the first time. The ratios of branching fractions of $ {\Xi}_c^{+}\to p{K}_S^0 $, $ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $, and $ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $ relative to that of $ {\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+} $ are measured to be$ {\displaystyle \begin{array}{c}\frac{\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(2.47\pm 0.16\pm 0.07\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(1.56\pm 0.14\pm 0.09\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(4.13\pm 0.26\pm 0.22\right)\%.\end{array}} $Multiplying these values by the branching fraction of the normalization channel, $ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)=\left(2.9\pm 1.3\right)\% $, the absolute branching fractions are determined to be$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)=\left(7.16\pm 0.46\pm 0.20\pm 3.21\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)=\left(4.52\pm 0.41\pm 0.26\pm 2.03\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)=\left(1.20\pm 0.08\pm 0.07\pm 0.54\right)\times {10}^{-3}.\end{array}} $The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty in $ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right) $..
OpenAccess: PDF PDF (PDFA);
Detailed record - Similar records
|
2025-04-24 14:22 |
Detailed record - Similar records
|
|
|