000093861 001__ 93861
000093861 005__ 20250731122559.0
000093861 0247_ $$2pmid$$apmid:19236962
000093861 0247_ $$2doi$$a10.1016/j.bone.2009.02.009
000093861 0247_ $$2ISSN$$a8756-3282
000093861 0247_ $$2ISSN$$a1873-2763
000093861 0247_ $$2WOS$$aWOS:000266347700012
000093861 0247_ $$2openalex$$aopenalex:W2078492598
000093861 037__ $$aPHPPUBDB-11774
000093861 041__ $$aeng
000093861 082__ $$a610
000093861 1001_ $$aKrauss, S.
000093861 1101_ $$aDESY$$bExperiments with synchrotron radiation
000093861 245__ $$aInhomogeneous fibril stretching in antler starts after macroscopic yielding: Indication for a nanoscale toughening mechanism
000093861 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2009
000093861 300__ $$a1105-1110
000093861 3367_ $$2DRIVER$$aarticle
000093861 3367_ $$2DataCite$$aOutput Types/Journal article
000093861 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1556225443_9140
000093861 3367_ $$2BibTeX$$aARTICLE
000093861 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000093861 3367_ $$00$$2EndNote$$aJournal Article
000093861 440_0 $$0PERI:(DE-600)1496324-3$$aBone$$v44$$x8756-3282$$y6
000093861 500__ $$3Converted on 2013-05-30 14:51$$a© Published by Elsevier Inc.; Post referee fulltext in progress 2; Embargo 12 months from publication
000093861 500__ $$3Converted on 2013-06-21 19:21
000093861 520__ $$aAntler is a unique mineralized tissue, with extraordinary toughness as well as an ability to annually regenerate itself in its entirety. The high fracture resistance enables it to fulfill its biological function as a weapon and defensive guard during combats between deer stags in the rutting season. However, very little is quantitatively understood about the structural origin of the antler's high toughness. We used a unique combination of time-resolved synchrotron small angle X-ray diffraction together with tensile testing of antler cortical tissue under physiologically wet conditions. We measured the deformation at the nanoscale from changes in the meridional diffraction pattern during macroscopic stretch-to-failure tests. Our results show that on average fibrils are strained only half as much as the whole tissue and the fibril strain increases linearly with tissue strain, both during elastic and inelastic deformation. Most remarkably, following macroscopic yielding we observe a straining of some fibrils equal to the macroscopic tissue strain while others are hardly stretched at all, indicating an inhomogeneous fibrillar strain pattern at the nanoscale. This behavior is unlike what occurs in plexiform bovine bone and may explain the extreme toughness of antler compared to normal bone.
000093861 536__ $$0G:(DE-H253)POF1-A2-20130405$$aDORIS Beamline A2 (POF1-550)$$cPOF1-550$$fPOF I$$x0
000093861 588__ $$aDataset connected to Pubmed
000093861 650_2 $$2MeSH$$aAnimals
000093861 650_2 $$2MeSH$$aAntlers: physiology
000093861 650_2 $$2MeSH$$aBiomechanics
000093861 650_2 $$2MeSH$$aBone and Bones: physiology
000093861 650_2 $$2MeSH$$aDeer
000093861 650_2 $$2MeSH$$aScattering, Small Angle
000093861 650_2 $$2MeSH$$aStress, Mechanical
000093861 650_2 $$2MeSH$$aTensile Strength: physiology
000093861 650_2 $$2MeSH$$aX-Ray Diffraction
000093861 693__ $$0EXP:(DE-H253)D-A2-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-A2-20150101$$aDORIS III$$fDORIS Beamline A2$$x0
000093861 7001_ $$aFratzl, P.
000093861 7001_ $$aSeto, J.
000093861 7001_ $$aCurrey, J. D.
000093861 7001_ $$aEstevez, J. A.
000093861 7001_ $$aFunari, S. S.
000093861 7001_ $$aGupta, H. S.
000093861 773__ $$0PERI:(DE-600)1496324-3$$a10.1016/j.bone.2009.02.009$$gVol. 44, p. 1105-1110$$p1105-1110$$q44<1105-1110$$tBone$$v44$$x8756-3282$$y2009
000093861 8564_ $$uhttps://bib-pubdb1.desy.de/record/93861/files/1-s2.0-S8756328209004499-main.pdf$$yRestricted
000093861 8564_ $$uhttps://bib-pubdb1.desy.de/record/93861/files/1-s2.0-S8756328209004499-main.gif?subformat=icon$$xicon$$yRestricted
000093861 8564_ $$uhttps://bib-pubdb1.desy.de/record/93861/files/1-s2.0-S8756328209004499-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000093861 8564_ $$uhttps://bib-pubdb1.desy.de/record/93861/files/1-s2.0-S8756328209004499-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000093861 8564_ $$uhttps://bib-pubdb1.desy.de/record/93861/files/1-s2.0-S8756328209004499-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000093861 8564_ $$uhttps://bib-pubdb1.desy.de/record/93861/files/1-s2.0-S8756328209004499-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000093861 909CO $$ooai:bib-pubdb1.desy.de:93861$$pVDB
000093861 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000093861 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000093861 915__ $$0StatID:(DE-HGF)1$$2StatID$$aNo Author Disambiguation
000093861 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000093861 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000093861 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000093861 9141_ $$a(c) Elsevier$$y2009
000093861 9101_ $$0I:(DE-588b)2008985-5$$aDeutsches Elektronen-Synchrotron$$kDESY
000093861 9101_ $$0I:(DE-HGF)0$$aExternes Institut$$kExtern
000093861 9131_ $$0G:(DE-HGF)POF1-550$$1G:(DE-HGF)POF1-550$$2G:(DE-HGF)POF1-500$$3G:(DE-HGF)POF1$$4G:(DE-HGF)POF$$9G:(DE-H253)POF1-A2-20130405$$aDE-H253$$bStruktur der Materie$$lGroßgeräte für die Forschung mit Photonen, Neutronen, Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen, Ionen$$x0
000093861 920__ $$k101
000093861 9201_ $$0I:(DE-H253)HASYLAB_-2012_-20130307$$kHASYLAB(-2012)$$lExperiments with synchrotron radiation$$x0
000093861 920_1 $$iExperiments with synchrotron radiation$$kHASYLAB
000093861 980__ $$ajournal
000093861 980__ $$aVDB
000093861 980__ $$aUNRESTRICTED
000093861 980__ $$aI:(DE-H253)HASYLAB_-2012_-20130307