001     93367
005     20250718143052.0
024 7 _ |a pmid:21386568
|2 pmid
024 7 _ |a 10.1088/0953-8984/22/40/404207
|2 doi
024 7 _ |a 1361-648X
|2 ISSN
024 7 _ |a 0953-8984
|2 ISSN
024 7 _ |a WOS:000282096000010
|2 WOS
024 7 _ |a openalex:W2022140704
|2 openalex
037 _ _ |a PHPPUBDB-13402
041 _ _ |a eng
082 _ _ |a 530
100 1 _ |a Jóvári, P.
110 1 _ |a DESY
|b Experiments with synchrotron radiation
245 _ _ |a Structure of Te-rich Te-Ge-X (X=I, Se, Ga) glasses
260 _ _ |a Bristol
|b IOP Publ.
|c 2010
300 _ _ |a 404207
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a article
|2 DRIVER
336 7 _ |a Journal Article
|m journal
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
440 _ 0 |a J. Phys. Condens. Matter
|v 22
|y 40
|x 0953-8984
|0 PERI:(DE-600)1472968-4
500 _ _ |3 Converted on 2013-05-30 14:43
500 _ _ |3 Converted on 2013-06-21 19:21
520 _ _ |a The structure of glassy Te(78)Ge(11)Ga(11), Te(79)Ge(16)Ga(5), Te(70)Ge(20)Se(10) and Te(73)Ge(20)I(7)--promising materials for far infrared applications--was investigated by means of x-ray and neutron diffraction as well as extended x-ray absorption fine structure measurements at various edges. Experimental data sets were fitted simultaneously in the framework of the reverse Monte Carlo simulation technique. Short range order in Te(85)Ge(15) was reinvestigated by fitting a new x-ray diffraction measurement together with available neutron diffraction and extended x-ray absorption fine structure data. It was found that Te(85)Ge(15) consists mostly of GeTe(4) structural units linked together directly or via bridging Te atoms. Te is predominantly twofold coordinated in Te(85)Ge(15), Te(70)Ge(20)Se(10) and Te(73)Ge(20)I(7) while in Te(78)Ge(11)Ga(11) and Te(79)Ge(16)Ga(5) the Te coordination number is significantly higher than 2. The Te-Te bond length is 2.80 ± 0.02 Å in Te(78)Ge(11)Ga(11) while it is as short as 2.70 ± 0.02 Å and 2.73 ± 0.02 Å in Te(73)Ge(20)I(7) and Te(70)Ge(20)Se(10), respectively. Our results show that the strengths of GeTe(4) (GeTe(3)I, GeTe(3)Se) 'units' are very similar in all glasses investigated but the connection between these units depends on the third component. Differences in the Te coordination number suggest that unlike Se or I, Ga does not build into the Ge-Te covalent network. Instead, it forms a covalent bond with the non-bonding p electrons of Te, which results in an increase in the average Te coordination number.
536 _ _ |0 G:(DE-H253)POF2-X1-20130405
|f POF II
|x 0
|c POF2-54G13
|a DORIS Beamline X1 (POF2-54G13)
536 _ _ |0 G:(DE-H253)POF2-BW5-20130405
|f POF II
|x 1
|c POF2-54G13
|a DORIS Beamline BW5 (POF2-54G13)
536 _ _ |a FS-Proposal: II-20060203 (II-20060203)
|0 G:(DE-H253)II-20060203
|c II-20060203
|x 2
588 _ _ |a Dataset connected to Pubmed
650 _ 2 |2 MeSH
|a Gallium: chemistry
650 _ 2 |2 MeSH
|a Germanium: chemistry
650 _ 2 |2 MeSH
|a Glass: chemistry
650 _ 2 |2 MeSH
|a Indium: chemistry
650 _ 2 |2 MeSH
|a Iodine: chemistry
650 _ 2 |2 MeSH
|a Neutron Diffraction
650 _ 2 |2 MeSH
|a Selenium: chemistry
650 _ 2 |2 MeSH
|a Tellurium: chemistry
650 _ 7 |0 13494-80-9
|2 NLM Chemicals
|a Tellurium
650 _ 7 |0 7440-55-3
|2 NLM Chemicals
|a Gallium
650 _ 7 |0 7440-56-4
|2 NLM Chemicals
|a Germanium
650 _ 7 |0 7440-74-6
|2 NLM Chemicals
|a Indium
650 _ 7 |0 7553-56-2
|2 NLM Chemicals
|a Iodine
650 _ 7 |0 7782-49-2
|2 NLM Chemicals
|a Selenium
693 _ _ |a DORIS III
|f DORIS Beamline X1
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-X1-20150101
|6 EXP:(DE-H253)D-X1-20150101
|x 0
693 _ _ |a DORIS III
|f DORIS Beamline BW5
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-BW5-20150101
|6 EXP:(DE-H253)D-BW5-20150101
|x 1
700 1 _ |a Kaban, I.
700 1 _ |a Bureau, B.
700 1 _ |a Wilhelm, A.
700 1 _ |a Lucas, P.
700 1 _ |a Beuneu, B.
700 1 _ |a Zajac, D.
773 _ _ |0 PERI:(DE-600)1472968-4
|a 10.1088/0953-8984/22/40/404207
|g Vol. 22, p. 404207
|p 404207
|q 22<404207
|t Journal of physics / Condensed matter
|v 22
|x 0953-8984
|y 2010
909 C O |o oai:bib-pubdb1.desy.de:93367
|p VDB
910 1 _ |0 I:(DE-588b)2008985-5
|a Deutsches Elektronen-Synchrotron
|k DESY
910 1 _ |0 I:(DE-HGF)0
|a Externes Institut
|k Extern
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6213
|x 0
913 1 _ |0 G:(DE-HGF)POF2-54G13
|1 G:(DE-HGF)POF2-540
|2 G:(DE-HGF)POF2-500
|9 G:(DE-H253)POF2-X1-20130405
|b Struktur der Materie
|v DORIS III
|x 0
|a DE-H253
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
913 1 _ |0 G:(DE-HGF)POF2-54G13
|1 G:(DE-HGF)POF2-540
|2 G:(DE-HGF)POF2-500
|9 G:(DE-H253)POF2-BW5-20130405
|b Struktur der Materie
|v DORIS III
|x 1
|a DE-H253
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
914 1 _ |a (c) Institute of Physics. Post referee version in progress.
|y 2010
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Author Disambiguation
|0 StatID:(DE-HGF)1
|2 StatID
920 _ 1 |k HASYLAB
|i Experiments with synchrotron radiation
920 1 _ |0 I:(DE-H253)HASYLAB_-2012_-20130307
|k HASYLAB
|l Experiments with synchrotron radiation
|x 0
920 _ _ |k 101
980 _ _ |a PHPPUBDB
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-H253)HASYLAB_-2012_-20130307
980 _ _ |a ConvertedRecord


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21