000646232 001__ 646232
000646232 005__ 20260218094409.0
000646232 020__ $$a9783110796810$$qebook
000646232 037__ $$aPUBDB-2026-00771
000646232 041__ $$aeng
000646232 1001_ $$aRomik, Dan$$b0
000646232 245__ $$aTopics in complex analysis
000646232 260__ $$bDe Gruyter$$c2023
000646232 300__ $$a296 pages
000646232 338__ $$2rdacarrier$$bnc
000646232 337__ $$2rdamedia$$bn
000646232 3367_ $$2BibTeX$$aBOOK$$btxt
000646232 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$bbook$$mbook$$s1771403718_1981146
000646232 3367_ $$2DataCite$$aOutput Types/Book$$btxt
000646232 3367_ $$2ORCID$$aBOOK$$btxt
000646232 3367_ $$01$$2EndNote$$aBook$$btxt
000646232 3367_ $$2DRIVER$$abook$$btxt
000646232 520__ $$aBegins with an introduction to the theory of functions of a complex variable, covers complex numbers and their properties, analytic functions and the Cauchy–Riemann equations, the logarithm and other elementary functions of a complex variable, integration of complex functions, the Cauchy integral theorem, the residue theorem, and definite integrals. Definitions and proofs are discussed as are applications to physics and engineering.
000646232 588__ $$aDataset connected to CrossRef Book
000646232 591__ $$aEnglish
000646232 8564_ $$uhttp://doi.org/10.1515/9783110796810$$yfull text
000646232 8527_ $$2DE-H253$$aOnline Library$$beBook$$cORD$$hORD$$p50-646232$$t1$$xOpen Access$$zuse online link
000646232 8767_ $$2DE-H253$$aOnline Library$$d2026-02-18$$eVerlag$$honline$$jarrived$$p50-646232$$t1
000646232 9801_ $$aOPAC
000646232 980__ $$abook