001     646221
005     20260218211012.0
024 7 _ |a 10.1038/s41467-025-67866-3
|2 doi
024 7 _ |a 10.3204/PUBDB-2026-00766
|2 datacite_doi
037 _ _ |a PUBDB-2026-00766
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Sappington, Isaac
|0 0000-0002-1073-0643
|b 0
245 _ _ |a Improved protein binder design using β-pairing targeted RFdiffusion
260 _ _ |a [London]
|c 2026
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1771420883_1981152
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Designing proteins that bind with high affinity to hydrophilic protein target sites remains a challenging problem. Here we show that RFdiffusion can be conditioned to generate protein scaffolds that form geometrically matched extended β-sheets with target protein edge β-strands in which polar groups on the target are complemented with hydrogen bonding groups on the design. We use this approach to design binders against edge-strand target sites on KIT, PDGFRɑ, ALK-2, ALK-3, FCRL5, NRP1, and α-CTX, and obtain higher (pM to mid nM) affinities and success rates than unconditioned RFdiffusion. Despite sharing β-strand interactions, designs have high specificity, reflecting the precise customization of interacting β-strand geometry and additional designed binder-target interactions. A binder-KIT co-crystal structure is nearly identical to the design model, confirming the accuracy of the design approach. The ability to robustly generate binders to the hydrophilic interaction surfaces of exposed β-strands considerably increases the range of computational binder design.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P13
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P13-20150101
|6 EXP:(DE-H253)P-P13-20150101
|x 0
700 1 _ |a Toul, Martin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lee, David S.
|0 0000-0001-6539-4272
|b 2
700 1 _ |a Robinson, Stephanie A.
|b 3
700 1 _ |a Goreshnik, Inna
|b 4
700 1 _ |a McCurdy, Clara
|0 0009-0008-8120-9776
|b 5
700 1 _ |a Chan, Tung Ching
|b 6
700 1 _ |a Buchholz, Nic
|b 7
700 1 _ |a Huang, Buwei
|b 8
700 1 _ |a Vafeados, Dionne
|0 0000-0002-2560-8907
|b 9
700 1 _ |a Garcia-Sanchez, Mariana
|0 0009-0002-9194-0251
|b 10
700 1 _ |a Roullier, Nicole
|0 0009-0004-8430-9538
|b 11
700 1 _ |a Glögl, Matthias
|b 12
700 1 _ |a Kim, Christopher J.
|0 0000-0003-4305-0473
|b 13
700 1 _ |a Watson, Joseph L.
|0 0000-0001-5492-0249
|b 14
700 1 _ |a Torres, Susana Vázquez
|b 15
700 1 _ |a Verschueren, Koen H. G.
|b 16
700 1 _ |a Verstraete, Kenneth
|b 17
700 1 _ |a Hinck, Cynthia S.
|b 18
700 1 _ |a Benard-Valle, Melisa
|0 0000-0002-0042-6592
|b 19
700 1 _ |a Coventry, Brian
|0 0000-0002-6910-6255
|b 20
700 1 _ |a Sims, Jeremiah Nelson
|0 0000-0002-0479-0367
|b 21
700 1 _ |a Ahn, Green
|0 0000-0003-4482-2754
|b 22
700 1 _ |a Wang, Xinru
|b 23
700 1 _ |a Hinck, Andrew P.
|0 0000-0003-3320-8054
|b 24
700 1 _ |a Jenkins, Timothy P.
|0 0000-0003-2979-5663
|b 25
700 1 _ |a Ruohola-Baker, Hannele
|0 0000-0002-5588-4531
|b 26
700 1 _ |a Banik, Steven M.
|0 0000-0002-0544-6488
|b 27
700 1 _ |a Savvides, Savvas N.
|b 28
700 1 _ |a Baker, David
|0 P:(DE-H253)PIP1104266
|b 29
|e Corresponding author
773 _ _ |a 10.1038/s41467-025-67866-3
|g Vol. 17, no. 1, p. 1101
|0 PERI:(DE-600)2553671-0
|n 1
|p 1101
|t Nature Communications
|v 17
|y 2026
|x 2041-1723
856 4 _ |u https://www.nature.com/articles/s41467-025-67866-3#article-info
856 4 _ |u https://bib-pubdb1.desy.de/record/646221/files/Improved%20protein%20binder%20design%20using%20beta%20pairing%20targeted%20RFdiffusion.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/646221/files/Improved%20protein%20binder%20design%20using%20beta%20pairing%20targeted%20RFdiffusion.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:646221
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 29
|6 P:(DE-H253)PIP1104266
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 29
|6 P:(DE-H253)PIP1104266
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2026
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2025-08-21T14:06:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-11-10
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-11-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-11-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-11-10
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2025-08-21T14:06:14Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-11-10
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2025-08-21T14:06:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2025-11-10
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21