001     646220
005     20260218211012.0
024 7 _ |a 10.1107/S2053230X25010416
|2 doi
024 7 _ |a 1744-3091
|2 ISSN
024 7 _ |a 2053-230X
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2026-00765
|2 datacite_doi
037 _ _ |a PUBDB-2026-00765
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Geerds, Christina
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Single mutations to tyrosine or glutamate improve the crystallizability and crystal diffraction properties of a flexible two-domain protein
260 _ _ |a Oxford [u.a.]
|c 2026
|b Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1771420717_1981154
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This case report describes single surface substitutions that improve the crystallizability and diffraction properties of a flexible two-domain protein. InlB392 comprises the internalin domain and the B repeat of the Listeria monocytogenes invasion protein InlB. The InlB392 wild type yielded very few poorly reproducible hits in crystallization screens and the crystals had a diffraction limit of worse than 3.0 Å. It seems reasonable to assume that this crystallization bottleneck is caused by interdomain flexibility, given that crystals of the isolated internalin domain or B repeat diffract to high resolution. A previously identified variant, T332E, showed improved crystallization and diffraction. Here, two additional InlB392 variants are described with single threonine-to-tyrosine or valine-to-glutamate substitutions that produced crystals directly in initial screens and, without optimization, diffracted to 1.6 and 1.45 Å resolution, respectively. The mutated residues do not participate in intramolecular interdomain interactions but mediate crystal contacts, indicating that specific surface properties, rather than interdomain flexibility per se, impede the crystallization of wild-type InlB392. Notably, the beneficial glutamate substitutions contrast with the generally recognized underrepresentation of glutamate in crystal contacts and the high entropic cost of fixing an otherwise flexible side chain with many rotatable bonds in a crystal contact. The reported results suggest that surface mutations can help crystallization even if they increase the entropy of the respective residue. More broadly, the observations are consistent with the hypothesis that negative evolutionary design limits fortuitous lattice formation of proteins and the resulting expectation that random mutations of surface residues are likely to improve crystallizability.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P13
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P13-20150101
|6 EXP:(DE-H253)P-P13-20150101
|x 0
700 1 _ |a Niemann, Hartmut
|0 P:(DE-H253)PIP1017643
|b 1
|e Corresponding author
773 _ _ |a 10.1107/S2053230X25010416
|g Vol. 82, no. 1, p. 4 - 13
|0 PERI:(DE-600)2175956-X
|n 1
|p 4 - 13
|t Acta crystallographica / Section F
|v 82
|y 2026
|x 1744-3091
856 4 _ |u https://journals.iucr.org/f/issues/2026/01/00/va5067/index.html
856 4 _ |u https://bib-pubdb1.desy.de/record/646220/files/Single%20mutations%20to%20tyrosine%20or%20glutamate%20improve%20the%20crystallizability%20and%20crystal%20diffraction%20properties%20of%20a%20flexible%20two-domain%20protein.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/646220/files/Single%20mutations%20to%20tyrosine%20or%20glutamate%20improve%20the%20crystallizability%20and%20crystal%20diffraction%20properties%20of%20a%20flexible%20two-domain%20protein.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:646220
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 1
|6 P:(DE-H253)PIP1017643
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1017643
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2026
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA CRYSTALLOGR F : 2022
|d 2024-12-20
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-20
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21