000646146 001__ 646146
000646146 005__ 20260217210827.0
000646146 0247_ $$2URN$$aurn:nbn:de:gbv:18-ediss-131275
000646146 037__ $$aPUBDB-2026-00745
000646146 041__ $$aEnglish
000646146 1001_ $$0P:(DE-H253)PIP1091506$$aRichard, Benoit$$b0$$eCorresponding author$$gmale
000646146 245__ $$aCoulomb explosion as a high-dimensional probe of single molecules$$f2019-12-02 - 2024-10-15
000646146 260__ $$c2024
000646146 300__ $$a99
000646146 3367_ $$2DataCite$$aOutput Types/Dissertation
000646146 3367_ $$2ORCID$$aDISSERTATION
000646146 3367_ $$2BibTeX$$aPHDTHESIS
000646146 3367_ $$02$$2EndNote$$aThesis
000646146 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1771325424_907079
000646146 3367_ $$2DRIVER$$adoctoralThesis
000646146 502__ $$aDissertation, University of Hamburg, 2024$$bDissertation$$cUniversity of Hamburg$$d2024$$o2024-10-15
000646146 520__ $$aThe past decades saw the development of X-ray induced Coulomb ex-plosion imaging as one of several methods to perform single-particlemolecular imaging on a femtosecond timescale. It has been enabledby the advent of x-ray free electron lasers. It works by firing intenseultrashort x-ray pulses on a gas jet of molecules. A single pulserapidly and strongly ionizes a single molecule, resulting in its ultra-fast dissociation, after which the momenta of the atomic fragmentsare measured in coincidence. This method has been successfully ap-plied to molecules composed of few atoms, but its extension to largersystems remains a challenge. In this thesis, we use simulation and ad-vanced analysis techniques to explore the potential of Coulomb explo-sion imaging and its applicability to larger molecules, focusing on the2-iodopyridine molecule (C5H4NI), which has been measured experi-mentally. We show that, despite detecting only few fragments in co-incidence, Coulomb explosion imaging provides meaningful imagesof the molecule. Analyzing our simulations in detail, we establishthat collisions between atoms during the explosion induce measur-able correlations between the momenta of the measured fragments,indicating that a large amount of information is hidden in the highdimensionality of the data. We then include the vibrational ground-state fluctuations of the molecule in our simulations, and show thatthey also leave a fingerprint in the ion-ion correlations, demonstrat-ing that Coulomb explosion can be used to image the complex collec-tive features of a distribution of molecular structures. To apply thoseanalyses to the experiment, we develop an algorithm to systematicallyfind the correlations in the experimental data. Our method succeedsdespite the random orientation of the molecule in the lab frame andthe limited efficiency of the detectors, thereby opening new ways tointerpret Coulomb explosion data, and allowing to exploit some ofits untapped potential.
000646146 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000646146 536__ $$0G:(GEPRIS)390715994$$aDFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Tiefe Einblicke in Materie (390715994)$$c390715994$$x1
000646146 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000646146 7001_ $$0P:(DE-H253)PIP1012203$$aSantra, Robin$$b1$$eThesis advisor$$udesy
000646146 7001_ $$0P:(DE-H253)PIP1023594$$aInhester, Ludger$$b2$$eThesis advisor$$udesy
000646146 8564_ $$uhttps://ediss.sub.uni-hamburg.de/handle/ediss/11917
000646146 8564_ $$uhttps://bib-pubdb1.desy.de/record/646146/files/main-3.pdf$$yRestricted
000646146 8564_ $$uhttps://bib-pubdb1.desy.de/record/646146/files/main-3.pdf?subformat=pdfa$$xpdfa$$yRestricted
000646146 909CO $$ooai:bib-pubdb1.desy.de:646146$$pVDB
000646146 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1091506$$aExternal Institute$$b0$$kExtern
000646146 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012203$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000646146 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1012203$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000646146 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1012203$$aEuropean XFEL$$b1$$kXFEL.EU
000646146 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023594$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000646146 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1023594$$aCentre for Free-Electron Laser Science$$b2$$kCFEL
000646146 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1023594$$aEuropean XFEL$$b2$$kXFEL.EU
000646146 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1023594$$aExternal Institute$$b2$$kExtern
000646146 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000646146 920__ $$lno
000646146 9201_ $$0I:(DE-H253)CFEL-DESYT-20160930$$kCFEL-DESYT$$lFS-CFEL-3$$x0
000646146 9201_ $$0I:(DE-H253)FS-CFEL-3-20120731$$kFS-CFEL-3$$lCFEL-Theory$$x1
000646146 980__ $$aphd
000646146 980__ $$aVDB
000646146 980__ $$aI:(DE-H253)CFEL-DESYT-20160930
000646146 980__ $$aI:(DE-H253)FS-CFEL-3-20120731
000646146 980__ $$aUNRESTRICTED