001     645897
005     20260210210707.0
024 7 _ |a 10.1016/j.optlastec.2025.114591
|2 doi
024 7 _ |a 0030-3992
|2 ISSN
024 7 _ |a 0308-4280
|2 ISSN
024 7 _ |a 0374-3926
|2 ISSN
024 7 _ |a 1878-7371
|2 ISSN
024 7 _ |a 1879-2545
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2026-00675
|2 datacite_doi
037 _ _ |a PUBDB-2026-00675
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Navarre, Claire
|b 0
245 _ _ |a Exploring real-time monitoring of laser-induced recrystallization using acoustic emissions
260 _ _ |a Amsterdam [u.a.]
|c 2026
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770728602_3476910
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 0030-3992 not unique: **2 hits**.
520 _ _ |a This study explores the use of acoustic emission (AE) signals for in situ characterization of recrystallization during laser processing. With millisecond-scale temporal resolution, AE monitoring can detect critical events during the recrystallization processes, including dislocation reorganization, nucleation, and grain growth. To connect such AE signals to recrystallization events, simultaneous in situ X-ray diffraction measurements were performed to establish a ground truth that could be correlated to collected AE data. From these experiments, a dominant frequency related to recrystallization was identified at ∼ 188 kHz using the current experimental setup. This frequency was isolated by filtering the raw AE data via a combination of power spectrum density distribution analysis, harmonic identification, and empirical mode decomposition. Focusing on the AE data from this frequency, it was possible to identify critical events during recrystallization, including the onset of nucleation as well as the completion of the recrystallization process. These findings represent the first attempt to unveil the acoustic signature of recrystallization, demonstrating the potential for real-time monitoring and control of diffusive microstructural evolutions during rapid processing. They further suggest that AE monitoring can serve as a powerful tool to optimize laser processing and enable precise microstructure control during recrystallization.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20231380 EC (I-20231380-EC)
|0 G:(DE-H253)I-20231380-EC
|c I-20231380-EC
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P23
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P23-20150101
|6 EXP:(DE-H253)P-P23-20150101
|x 0
700 1 _ |a Hearn, William
|0 P:(DE-H253)PIP1107547
|b 1
|e Corresponding author
700 1 _ |a Van der Meer, Mathijs
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schlenger, Lucas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Vaerenberg, Rik
|0 0000-0002-8827-9047
|b 4
700 1 _ |a Mari, Nicolas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Esmaeilzadeh, Reza
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jamili, Amir M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Pandiyan, Vigneashwara
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Van Petegem, Steven
|0 P:(DE-H253)PIP1020213
|b 9
|e Corresponding author
700 1 _ |a Logé, Roland E.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1016/j.optlastec.2025.114591
|g Vol. 195, p. 114591 -
|0 PERI:(DE-600)2212067-1
|p 114591
|t Optics technology
|v 195
|y 2026
|x 0030-3992
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/645897/files/1-s2.0-S0030399225021826-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/645897/files/1-s2.0-S0030399225021826-main.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:645897
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1107547
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1020213
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2026
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OPT LASER TECHNOL : 2022
|d 2024-12-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b OPT LASER TECHNOL : 2022
|d 2024-12-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21