001     645113
005     20260202105014.0
024 7 _ |a 10.1038/s41467-025-67687-4
|2 doi
037 _ _ |a PUBDB-2026-00608
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Smith, Timothy M.
|0 0000-0002-6568-9721
|b 0
245 _ _ |a The mechanisms underlying the enhanced high-temperature properties of GRX-810
260 _ _ |a [London]
|c 2026
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770025745_3939689
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The demand for metal alloys that can perform at extreme temperatures above1100 °C while remaining manufacturable has sparked renewed interest inprintable oxide dispersion strengthened (ODS) alloys. Recently, NASA devel-oped an ODS alloy designed for additive manufacturing, known as GRX-810,which has demonstrated exceptional tensile and creep performance at tem-peratures of 1093 °C and higher. In the present study, tensile tests of GRX-810are conducted up to 1316 °C and creep tests are performed in both the hor-izontal and vertical orientations, relative to the build direction. Thermalcycling is executed at 1100 °C, 1200 °C, and 1300 °C in air. The oxidationbehavior of GRX-810 is compared to that of alumina forming single crystal Ni-base superalloys and chromia-forming wrought alloys such as superalloys 718and 625. High resolution atomic-scale characterization and atomistic modelingare employed to explain the exceptional high temperature propertiesobserved in GRX-810, particularly in relation to the unique, finer trigonalyttrium oxides produced during the additive manufacturing process
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P07
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P07-20150101
|6 EXP:(DE-H253)P-P07-20150101
|x 0
700 1 _ |a Kantzos, Christopher A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Harder, Bryan J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bezold, Andreas
|0 P:(DE-H253)PIP1092975
|b 3
700 1 _ |a Heczko, Milan
|0 0000-0002-8049-4527
|b 4
700 1 _ |a Miao, Jiashi
|0 0000-0002-9440-6671
|b 5
700 1 _ |a Plummer, Gabriel
|0 0000-0002-9330-9028
|b 6
700 1 _ |a Mendelev, Mikhail I.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Thompson, Aaron C.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Puleo, Bernadette J.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Whitt, Austin J.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Stark, Andreas
|0 P:(DE-H253)PIP1011120
|b 11
700 1 _ |a Neumeier, Steffen
|b 12
700 1 _ |a Gabb, Timothy P.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Lawson, John W.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Mills, Michael J.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Gradl, Paul R.
|0 0000-0002-2861-3410
|b 16
773 _ _ |a 10.1038/s41467-025-67687-4
|g Vol. 17, no. 1, p. 963
|0 PERI:(DE-600)2553671-0
|n 963
|p 1-14
|t Nature Communications
|v 17
|y 2026
|x 2041-1723
856 4 _ |u https://bib-pubdb1.desy.de/record/645113/files/Smith_NatComm_2025.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/645113/files/Smith_NatComm_2025.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1092975
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1011120
910 1 _ |a Helmholtz-Zentrum Hereon
|0 I:(DE-588b)1231250402
|k Hereon
|b 11
|6 P:(DE-H253)PIP1011120
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2026
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
920 1 _ |0 I:(DE-H253)FS_DOOR-User-20241023
|k FS DOOR-User
|l FS DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)Hereon-20210428
|k Hereon
|l Helmholtz-Zentrum Hereon
|x 1
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-H253)FS_DOOR-User-20241023
980 _ _ |a I:(DE-H253)Hereon-20210428
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21