000645083 001__ 645083
000645083 005__ 20260201060318.0
000645083 0247_ $$2INSPIRETeX$$aSchwagerl:2025dsj
000645083 0247_ $$2inspire$$ainspire:2965708
000645083 0247_ $$2arXiv$$aarXiv:2509.02329
000645083 0247_ $$2datacite_doi$$a10.3204/PUBDB-2026-00588
000645083 037__ $$aPUBDB-2026-00588
000645083 041__ $$aEnglish
000645083 082__ $$a530
000645083 088__ $$2arXiv$$aarXiv:2509.02329
000645083 1001_ $$0P:(DE-H253)PIP1097328$$aSchwägerl, Tim$$b0$$eCorresponding author$$udesy
000645083 245__ $$aFermion discretization effects in the two-flavor lattice Schwinger model: A study with matrix product states
000645083 260__ $$c2025
000645083 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1769693481_3464739
000645083 3367_ $$2ORCID$$aWORKING_PAPER
000645083 3367_ $$028$$2EndNote$$aElectronic Article
000645083 3367_ $$2DRIVER$$apreprint
000645083 3367_ $$2BibTeX$$aARTICLE
000645083 3367_ $$2DataCite$$aOutput Types/Working Paper
000645083 500__ $$a23 pages, 11 figures
000645083 520__ $$aWe present a comprehensive tensor network study of staggered, Wilson, and twisted mass fermions in the Hamiltonian formulation, using the massive two-flavor Schwinger model as a benchmark. Particular emphasis is placed on twisted mass fermions, whose properties in this context have not been systematically explored before. We confirm the expected O(a) improvement in the free theory and observe that this improvement persists in the interacting case. By leveraging an electric-field-based method for mass renormalization, we reliably tune to maximal twist and establish the method’s applicability in the two-flavor model. Once mass renormalization is included, the pion mass exhibits rapid convergence to the continuum limit. Finite-volume effects are addressed using two complementary approaches: dispersion relation fits and finite-volume scaling. Our results show excellent agreement with semiclassical predictions and reveal a milder volume dependence for twisted mass fermions compared to staggered and Wilson discretizations. In addition, we observe clear isospin-breaking effects, suggesting intriguing parallels with lattice QCD. These findings highlight the advantages of twisted mass fermions for Hamiltonian simulations and motivate their further exploration—particularly in view of future applications to higher-dimensional lattice gauge theories.
000645083 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000645083 536__ $$0G:(EU-Grant)101087126$$aQUEST - QUantum computing for Excellence in Science and Technology (101087126)$$c101087126$$fHORIZON-WIDERA-2022-TALENTS-01$$x1
000645083 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000645083 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000645083 7001_ $$0P:(DE-H253)PIP1003636$$aJansen, Karl$$b1
000645083 7001_ $$0P:(DE-H253)PIP1086314$$aKühn, Stefan$$b2
000645083 8564_ $$uhttps://bib-pubdb1.desy.de/record/645083/files/2509.02329v1.pdf$$yOpenAccess
000645083 8564_ $$uhttps://bib-pubdb1.desy.de/record/645083/files/2509.02329v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000645083 909CO $$ooai:bib-pubdb1.desy.de:645083$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000645083 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1097328$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000645083 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097328$$aExternal Institute$$b0$$kExtern
000645083 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003636$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000645083 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086314$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000645083 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000645083 9141_ $$y2025
000645083 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000645083 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000645083 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000645083 9201_ $$0I:(DE-H253)CQTA-20221102$$kCQTA$$lCentre f. Quantum Techno. a. Application$$x0
000645083 9201_ $$0I:(DE-H253)HUB-20140108$$kHUB$$lHumboldt-Universität zu Berlin$$x1
000645083 9201_ $$0I:(DE-H253)Z_ET-20210408$$kZ_ET$$lTeilchenphysik$$x2
000645083 980__ $$apreprint
000645083 980__ $$aVDB
000645083 980__ $$aUNRESTRICTED
000645083 980__ $$aI:(DE-H253)CQTA-20221102
000645083 980__ $$aI:(DE-H253)HUB-20140108
000645083 980__ $$aI:(DE-H253)Z_ET-20210408
000645083 9801_ $$aFullTexts