000644989 001__ 644989
000644989 005__ 20260130213929.0
000644989 0247_ $$2doi$$a10.1017/flo.2025.8
000644989 0247_ $$2datacite_doi$$a10.3204/PUBDB-2026-00516
000644989 037__ $$aPUBDB-2026-00516
000644989 041__ $$aEnglish
000644989 082__ $$a530
000644989 1001_ $$aOsawa, Kosuke$$b0
000644989 245__ $$aRegulating nanofibril assembly using diverse flow-focusing channels
000644989 260__ $$aCambridge$$bCambridge University Press$$c2025
000644989 3367_ $$2DRIVER$$aarticle
000644989 3367_ $$2DataCite$$aOutput Types/Journal article
000644989 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769768939_2454235
000644989 3367_ $$2BibTeX$$aARTICLE
000644989 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000644989 3367_ $$00$$2EndNote$$aJournal Article
000644989 520__ $$aProperties and functions of materials assembled from nanofibrils critically depend on alignment. A material with aligned nanofibrils is typically stiffer compared with a material with a less anisotropic orientation distribution. In this work, we investigate nanofibril alignment during flow focusing, a flow case used for spinning of filaments from nanofibril dispersions. In particular, we combine experimental measurements and simulations of the flow and fibril alignment to demonstrate how a numerical model can be used to investigate how the flow geometry affects and can be used to tailor the nanofibril alignment and filament shape. The confluence angle between sheath flow and core flow, the aspect ratio of the channel and the contractions in the sheath and/or core flow channels are varied. Successful spinning of stiff filaments requires: (i) detachment of the core flow from the top and bottom channel walls and (ii) a high and homogeneous fibril alignment. Somewhat expected, the results show that the confluence angle has a relatively small effect on alignment compared with contractions. Contractions in the sheath flow channels are seen to be beneficial for detachment, and contractions in the core flow channel are found to be an efficient way to increase and homogenise the degree of alignment.
000644989 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000644989 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000644989 536__ $$0G:(DE-HGF)2020_Join2-SWEDEN-DESY$$aSWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)$$c2020_Join2-SWEDEN-DESY$$x2
000644989 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000644989 693__ $$0EXP:(DE-H253)P-P03-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P03-20150101$$aPETRA III$$fPETRA Beamline P03$$x0
000644989 7001_ $$aKrishne Gowda, V.$$b1
000644989 7001_ $$0P:(DE-H253)PIP1026386$$aRosén, Tomas$$b2
000644989 7001_ $$0P:(DE-H253)PIP1003299$$aRoth, Stephan V.$$b3
000644989 7001_ $$0P:(DE-H253)PIP1019290$$aSöderberg, L. Daniel$$b4
000644989 7001_ $$00000-0002-3552-4555$$aShiomi, Junichiro$$b5
000644989 7001_ $$0P:(DE-H253)PIP1018084$$aLundell, Fredrik$$b6$$eCorresponding author
000644989 773__ $$0PERI:(DE-600)3063409-X$$a10.1017/flo.2025.8$$gVol. 5, p. E12$$pE12$$tFlow$$v5$$x2633-4259$$y2025
000644989 8564_ $$uhttps://bib-pubdb1.desy.de/record/644989/files/regulating-nanofibril-assembly-using-diverse-flow-focusing-channels.pdf$$yOpenAccess
000644989 8564_ $$uhttps://bib-pubdb1.desy.de/record/644989/files/regulating-nanofibril-assembly-using-diverse-flow-focusing-channels.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000644989 909CO $$ooai:bib-pubdb1.desy.de:644989$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000644989 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1026386$$aExternal Institute$$b2$$kExtern
000644989 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003299$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000644989 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1003299$$aEuropean XFEL$$b3$$kXFEL.EU
000644989 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1019290$$aExternal Institute$$b4$$kExtern
000644989 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1018084$$aExternal Institute$$b6$$kExtern
000644989 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000644989 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000644989 9141_ $$y2025
000644989 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000644989 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000644989 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-28
000644989 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-04T14:28:44Z
000644989 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-04T14:28:44Z
000644989 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-28
000644989 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
000644989 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000644989 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-04T14:28:44Z
000644989 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-28
000644989 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-28$$wger
000644989 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
000644989 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000644989 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000644989 9201_ $$0I:(DE-H253)FS-SMA-20220811$$kFS-SMA$$lSustainable Materials$$x1
000644989 980__ $$ajournal
000644989 980__ $$aVDB
000644989 980__ $$aUNRESTRICTED
000644989 980__ $$aI:(DE-H253)HAS-User-20120731
000644989 980__ $$aI:(DE-H253)FS-SMA-20220811
000644989 9801_ $$aFullTexts