001     644958
005     20260202210343.0
024 7 _ |a 10.1016/j.scriptamat.2025.116826
|2 doi
024 7 _ |a 1359-6462
|2 ISSN
024 7 _ |a 1872-8456
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2026-00501
|2 datacite_doi
037 _ _ |a PUBDB-2026-00501
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Olczak, Adam
|0 P:(DE-H253)PIP1090793
|b 0
|e Corresponding author
245 _ _ |a Atomic dynamics and local structural disorder during ultrafast melting of polycrystalline Pd
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770023540_3939685
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The primary distinction between solid and liquid phases is mechanical rigidity, with liquids having a disordered atomic structure that allows flow. While melting is a common phase transition, its microscopic mechanisms still remain unclear. This study uses molecular dynamics simulations to investigate ultrafast melting in polycrystalline palladium, focusing on the relationship between atomic dynamics quantified by the root-mean-squared displacement (RMSD) and local structural disorder characterized by the deviation from centrosymmetry. In the crystal bulk, melting is preceded by a gradual rise in the RMSD and local disorder. As the Lindemann limit for the RMSD is approached, the increasing concentration of lattice defects is manifested by a discontinuous rise in disorder. On melting, the rise is followed by a rapid increase in displacement, indicative of atomic flow. In contrast, the grain boundaries undergo melting through a continuous increase of both the displacement and the disorder, resembling a glass transition on heating.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a SFB 1242 C01 - Strukturelle Dynamik in impulsiv angeregten Nanostrukturen (C01) (317682047)
|0 G:(GEPRIS)317682047
|c 317682047
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Sobierajski, Ryszard
|0 P:(DE-H253)PIP1007902
|b 1
700 1 _ |a Dzięgielewski, Przemysław
|0 0000-0002-7544-3960
|b 2
700 1 _ |a Khan, Salman A.
|b 3
700 1 _ |a Kostera, Zuzanna
|0 P:(DE-H253)PIP1105230
|b 4
700 1 _ |a Migdal, Kirill P.
|0 0000-0003-2837-6889
|b 5
700 1 _ |a Milov, Igor
|0 P:(DE-H253)PIP1030869
|b 6
700 1 _ |a Sokolowski-Tinten, Klaus
|0 P:(DE-H253)PIP1008126
|b 7
700 1 _ |a Zalden, Peter
|0 P:(DE-H253)PIP1008595
|b 8
700 1 _ |a Zhakhovsky, Vasily V.
|b 9
700 1 _ |a Antonowicz, Jerzy
|b 10
|e Corresponding author
773 _ _ |a 10.1016/j.scriptamat.2025.116826
|g Vol. 267, p. 116826 -
|0 PERI:(DE-600)2015843-9
|p 116826
|t Scripta materialia
|v 267
|y 2025
|x 1359-6462
856 4 _ |u https://bib-pubdb1.desy.de/record/644958/files/1-s2.0-S1359646225002891-main.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/644958/files/1-s2.0-S1359646225002891-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:644958
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1090793
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1090793
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1007902
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1105230
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1105230
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 6
|6 P:(DE-H253)PIP1030869
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1030869
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1030869
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1008126
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1008126
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1008595
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCRIPTA MATER : 2022
|d 2024-12-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCRIPTA MATER : 2022
|d 2024-12-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21