001     644517
005     20260126211755.0
024 7 _ |a 10.1016/j.nima.2025.170227
|2 doi
024 7 _ |a Wennlof:2024ysx
|2 INSPIRETeX
024 7 _ |a inspire:2813828
|2 inspire
024 7 _ |a 0167-5087
|2 ISSN
024 7 _ |a 0168-9002
|2 ISSN
024 7 _ |a 1872-9576
|2 ISSN
024 7 _ |a 1872-9606
|2 ISSN
024 7 _ |a arXiv:2408.00027
|2 arXiv
037 _ _ |a PUBDB-2026-00376
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2408.00027
|2 arXiv
088 _ _ |a arXiv:2408.00027
|2 arXiv
100 1 _ |a Wennloef, Hakan Lennart Olov
|0 P:(DE-H253)PIP1097675
|b 0
|e Corresponding author
245 _ _ |a Simulating monolithic active pixel sensors: A technology-independent approach using generic doping profiles
260 _ _ |a [Amsterdam]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769419243_2701579
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 22 pages, 25 figures, submitted to Nuclear Instruments and Methods in Physics Research, Section A
520 _ _ |a The optimisation of the sensitive region of CMOS sensors with complex non-uniform electric fields requires precise simulations, and this can be achieved by a combination of electrostatic field simulations and Monte Carlo methods. This paper presents the guiding principles of such simulations, using a CMOS pixel sensor with a small collection electrode and a high-resistivity epitaxial layer as an example. The full simulation workflow is described, along with possible pitfalls and how to avoid them. The presented method provides an optimisation tool that is sufficiently accurate to investigate sensor behaviour and trade-offs of different sensor designs without knowledge of proprietary information. The workflow starts with detailed electric field finite element method simulations in TCAD, using generic doping profiles. Examples of the effect of varying different parameters of the simulated sensor are shown, as well as the creation of weighting fields, and transient pulse simulations. Using this, a realistic working geometry representing the investigated sensors is determined. The fields resulting from TCAD simulations can be imported into the Allpix2 Monte Carlo simulation framework, which enables high-statistics simulations. Example Monte Carlo simulation setups are presented and the different parts of a simulation chain are described. Simulation studies from small collection electrode CMOS sensors are presented, and example results are shown for both single sensors and multiple sensors in a test beam telescope configuration. The studies shown are those typically performed on sensor prototypes in test beam campaigns, and a comparison is made to test beam data, showing a maximum deviation of 4% and demonstrating that the approach is viable for generating realistic results. The presented simulation procedure thus proves a useful tool for sensor research and development.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a AIDAinnova - Advancement and Innovation for Detectors at Accelerators (101004761)
|0 G:(EU-Grant)101004761
|c 101004761
|f H2020-INFRAINNOV-2020-2
|x 1
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
650 _ 7 |a Shockley–Ramo
|2 autogen
650 _ 7 |a Simulation
|2 autogen
650 _ 7 |a Monte Carlo
|2 autogen
650 _ 7 |a Silicon detectors
|2 autogen
650 _ 7 |a TCAD
|2 autogen
650 _ 7 |a Drift–diffusion
|2 autogen
650 _ 7 |a Geant4
|2 autogen
650 _ 7 |a Allpix Squared
|2 autogen
650 _ 7 |a Pixellated detectors
|2 autogen
650 _ 7 |a Charged particle tracking
|2 autogen
650 _ 7 |a Monolithic active pixel sensors
|2 autogen
650 _ 7 |a MAPS
|2 autogen
693 _ _ |a LHC
|e LHC: ATLAS
|1 EXP:(DE-588)4398783-7
|0 EXP:(DE-H253)LHC-Exp-ATLAS-20150101
|5 EXP:(DE-H253)LHC-Exp-ATLAS-20150101
|x 0
700 1 _ |a Dannheim, Dominik
|b 1
700 1 _ |a Viera, Manuel Del Rio
|b 2
700 1 _ |a Dort, Katharina
|b 3
700 1 _ |a Eckstein, Doris
|b 4
700 1 _ |a King, Finn
|0 P:(DE-H253)PIP1019720
|b 5
|u desy
700 1 _ |a Gregor, Ingrid-Maria
|0 P:(DE-H253)PIP1004563
|b 6
|u desy
700 1 _ |a Huth, Lennart
|0 P:(DE-H253)PIP1024990
|b 7
|u desy
700 1 _ |a Lachnit, Stephan
|0 P:(DE-H253)PIP1098944
|b 8
|u desy
700 1 _ |a Mendes, Larissa
|0 P:(DE-H253)PIP1097577
|b 9
|u desy
700 1 _ |a Rastorguev, Daniil
|b 10
700 1 _ |a Daza, Sara Ruiz
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Schütze, Paul
|b 12
700 1 _ |a Simancas, Adriana
|0 P:(DE-H253)PIP1094798
|b 13
|u desy
700 1 _ |a Snoeys, Walter
|b 14
700 1 _ |a Spannagel, Simon
|0 P:(DE-H253)PIP1018940
|b 15
|u desy
700 1 _ |a Stanitzki, Marcel
|0 P:(DE-H253)PIP1014417
|b 16
|u desy
700 1 _ |a Tomal, Alessandra
|b 17
700 1 _ |a Velyka, Anastasiia
|0 P:(DE-H253)PIP1021838
|b 18
|u desy
700 1 _ |a Vignola, Gianpiero
|0 P:(DE-H253)PIP1099070
|b 19
|u desy
773 _ _ |a 10.1016/j.nima.2025.170227
|g Vol. 1073, p. 170227 -
|0 PERI:(DE-600)1466532-3
|p 170227 -
|t Nuclear instruments & methods in physics research / Section A
|v 1073
|y 2025
|x 0167-5087
787 0 _ |a Wennlöf, Håkan et.al.
|d 2024
|i IsParent
|0 PUBDB-2024-06315
|r arXiv:2408.00027
|t Simulating Monolithic Active Pixel Sensors: A Technology-Independent Approach Using Generic Doping Profiles
856 4 _ |u https://bib-pubdb1.desy.de/record/644517/files/1-s2.0-S0168900225000282-main.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/644517/files/1-s2.0-S0168900225000282-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:644517
|p openaire
|p ec_fundedresources
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1097675
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1097675
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1019720
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1004563
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1024990
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1098944
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1097577
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1094798
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 13
|6 P:(DE-H253)PIP1094798
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1018940
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 16
|6 P:(DE-H253)PIP1014417
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 18
|6 P:(DE-H253)PIP1021838
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 19
|6 P:(DE-H253)PIP1099070
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL INSTRUM METH A : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-11
920 1 _ |0 I:(DE-H253)ATLAS-20120731
|k ATLAS
|l LHC/ATLAS Experiment
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-H253)ATLAS-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21