000644517 001__ 644517
000644517 005__ 20260126211755.0
000644517 0247_ $$2doi$$a10.1016/j.nima.2025.170227
000644517 0247_ $$2INSPIRETeX$$aWennlof:2024ysx
000644517 0247_ $$2inspire$$ainspire:2813828
000644517 0247_ $$2ISSN$$a0167-5087
000644517 0247_ $$2ISSN$$a0168-9002
000644517 0247_ $$2ISSN$$a1872-9576
000644517 0247_ $$2ISSN$$a1872-9606
000644517 0247_ $$2arXiv$$aarXiv:2408.00027
000644517 037__ $$aPUBDB-2026-00376
000644517 041__ $$aEnglish
000644517 082__ $$a530
000644517 088__ $$2arXiv$$aarXiv:2408.00027
000644517 088__ $$2arXiv$$aarXiv:2408.00027
000644517 1001_ $$0P:(DE-H253)PIP1097675$$aWennloef, Hakan Lennart Olov$$b0$$eCorresponding author
000644517 245__ $$aSimulating monolithic active pixel sensors: A technology-independent approach using generic doping profiles
000644517 260__ $$a[Amsterdam]$$bElsevier$$c2025
000644517 3367_ $$2DRIVER$$aarticle
000644517 3367_ $$2DataCite$$aOutput Types/Journal article
000644517 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769419243_2701579
000644517 3367_ $$2BibTeX$$aARTICLE
000644517 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000644517 3367_ $$00$$2EndNote$$aJournal Article
000644517 500__ $$a22 pages, 25 figures, submitted to Nuclear Instruments and Methods in Physics Research, Section A
000644517 520__ $$aThe optimisation of the sensitive region of CMOS sensors with complex non-uniform electric fields requires precise simulations, and this can be achieved by a combination of electrostatic field simulations and Monte Carlo methods. This paper presents the guiding principles of such simulations, using a CMOS pixel sensor with a small collection electrode and a high-resistivity epitaxial layer as an example. The full simulation workflow is described, along with possible pitfalls and how to avoid them. The presented method provides an optimisation tool that is sufficiently accurate to investigate sensor behaviour and trade-offs of different sensor designs without knowledge of proprietary information. The workflow starts with detailed electric field finite element method simulations in TCAD, using generic doping profiles. Examples of the effect of varying different parameters of the simulated sensor are shown, as well as the creation of weighting fields, and transient pulse simulations. Using this, a realistic working geometry representing the investigated sensors is determined. The fields resulting from TCAD simulations can be imported into the Allpix2 Monte Carlo simulation framework, which enables high-statistics simulations. Example Monte Carlo simulation setups are presented and the different parts of a simulation chain are described. Simulation studies from small collection electrode CMOS sensors are presented, and example results are shown for both single sensors and multiple sensors in a test beam telescope configuration. The studies shown are those typically performed on sensor prototypes in test beam campaigns, and a comparison is made to test beam data, showing a maximum deviation of 4% and demonstrating that the approach is viable for generating realistic results. The presented simulation procedure thus proves a useful tool for sensor research and development.
000644517 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000644517 536__ $$0G:(EU-Grant)101004761$$aAIDAinnova - Advancement and Innovation for Detectors at Accelerators (101004761)$$c101004761$$fH2020-INFRAINNOV-2020-2$$x1
000644517 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000644517 650_7 $$2autogen$$aShockley–Ramo
000644517 650_7 $$2autogen$$aSimulation
000644517 650_7 $$2autogen$$aMonte Carlo
000644517 650_7 $$2autogen$$aSilicon detectors
000644517 650_7 $$2autogen$$aTCAD
000644517 650_7 $$2autogen$$aDrift–diffusion
000644517 650_7 $$2autogen$$aGeant4
000644517 650_7 $$2autogen$$aAllpix Squared
000644517 650_7 $$2autogen$$aPixellated detectors
000644517 650_7 $$2autogen$$aCharged particle tracking
000644517 650_7 $$2autogen$$aMonolithic active pixel sensors
000644517 650_7 $$2autogen$$aMAPS
000644517 693__ $$0EXP:(DE-H253)LHC-Exp-ATLAS-20150101$$1EXP:(DE-588)4398783-7$$5EXP:(DE-H253)LHC-Exp-ATLAS-20150101$$aLHC$$eLHC: ATLAS$$x0
000644517 7001_ $$aDannheim, Dominik$$b1
000644517 7001_ $$aViera, Manuel Del Rio$$b2
000644517 7001_ $$aDort, Katharina$$b3
000644517 7001_ $$aEckstein, Doris$$b4
000644517 7001_ $$0P:(DE-H253)PIP1019720$$aKing, Finn$$b5$$udesy
000644517 7001_ $$0P:(DE-H253)PIP1004563$$aGregor, Ingrid-Maria$$b6$$udesy
000644517 7001_ $$0P:(DE-H253)PIP1024990$$aHuth, Lennart$$b7$$udesy
000644517 7001_ $$0P:(DE-H253)PIP1098944$$aLachnit, Stephan$$b8$$udesy
000644517 7001_ $$0P:(DE-H253)PIP1097577$$aMendes, Larissa$$b9$$udesy
000644517 7001_ $$aRastorguev, Daniil$$b10
000644517 7001_ $$0P:(DE-HGF)0$$aDaza, Sara Ruiz$$b11
000644517 7001_ $$aSchütze, Paul$$b12
000644517 7001_ $$0P:(DE-H253)PIP1094798$$aSimancas, Adriana$$b13$$udesy
000644517 7001_ $$aSnoeys, Walter$$b14
000644517 7001_ $$0P:(DE-H253)PIP1018940$$aSpannagel, Simon$$b15$$udesy
000644517 7001_ $$0P:(DE-H253)PIP1014417$$aStanitzki, Marcel$$b16$$udesy
000644517 7001_ $$aTomal, Alessandra$$b17
000644517 7001_ $$0P:(DE-H253)PIP1021838$$aVelyka, Anastasiia$$b18$$udesy
000644517 7001_ $$0P:(DE-H253)PIP1099070$$aVignola, Gianpiero$$b19$$udesy
000644517 773__ $$0PERI:(DE-600)1466532-3$$a10.1016/j.nima.2025.170227$$gVol. 1073, p. 170227 -$$p170227 -$$tNuclear instruments & methods in physics research / Section A$$v1073$$x0167-5087$$y2025
000644517 7870_ $$0PUBDB-2024-06315$$aWennlöf, Håkan et.al.$$d2024$$iIsParent$$rarXiv:2408.00027$$tSimulating Monolithic Active Pixel Sensors: A Technology-Independent Approach Using Generic Doping Profiles
000644517 8564_ $$uhttps://bib-pubdb1.desy.de/record/644517/files/1-s2.0-S0168900225000282-main.pdf$$yRestricted
000644517 8564_ $$uhttps://bib-pubdb1.desy.de/record/644517/files/1-s2.0-S0168900225000282-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000644517 909CO $$ooai:bib-pubdb1.desy.de:644517$$popenaire$$pec_fundedresources
000644517 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097675$$aExternal Institute$$b0$$kExtern
000644517 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1097675$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000644517 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019720$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000644517 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1004563$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000644517 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1024990$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000644517 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1098944$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000644517 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1097577$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY
000644517 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-HGF)0$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY
000644517 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094798$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY
000644517 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1094798$$aCentre for Free-Electron Laser Science$$b13$$kCFEL
000644517 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018940$$aDeutsches Elektronen-Synchrotron$$b15$$kDESY
000644517 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1014417$$aDeutsches Elektronen-Synchrotron$$b16$$kDESY
000644517 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021838$$aDeutsches Elektronen-Synchrotron$$b18$$kDESY
000644517 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1099070$$aDeutsches Elektronen-Synchrotron$$b19$$kDESY
000644517 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000644517 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
000644517 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
000644517 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
000644517 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
000644517 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-11
000644517 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
000644517 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
000644517 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
000644517 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL INSTRUM METH A : 2022$$d2024-12-11
000644517 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
000644517 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
000644517 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
000644517 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
000644517 9201_ $$0I:(DE-H253)ATLAS-20120731$$kATLAS$$lLHC/ATLAS Experiment$$x0
000644517 980__ $$ajournal
000644517 980__ $$aEDITORS
000644517 980__ $$aVDBINPRINT
000644517 980__ $$aI:(DE-H253)ATLAS-20120731
000644517 980__ $$aUNRESTRICTED