000644459 001__ 644459 000644459 005__ 20260123102725.0 000644459 0247_ $$2doi$$a10.1021/acsnano.5c16138 000644459 0247_ $$2ISSN$$a1936-0851 000644459 0247_ $$2ISSN$$a1936-086X 000644459 0247_ $$2datacite_doi$$a10.3204/PUBDB-2026-00336 000644459 037__ $$aPUBDB-2026-00336 000644459 041__ $$aEnglish 000644459 082__ $$a540 000644459 1001_ $$0P:(DE-H253)PIP1081202$$aLapkin, Dmitrii$$b0$$eCorresponding author$$udesy 000644459 245__ $$aDefect Migration in Supercrystalline Nanocomposites 000644459 260__ $$aWashington, DC$$bSoc.$$c2025 000644459 3367_ $$2DRIVER$$aarticle 000644459 3367_ $$2DataCite$$aOutput Types/Journal article 000644459 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769077521_4058267 000644459 3367_ $$2BibTeX$$aARTICLE 000644459 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000644459 3367_ $$00$$2EndNote$$aJournal Article 000644459 520__ $$aSupercrystalline nanocomposites (SCNCs) are nanostructured hybrid materials with a variety of unique functional properties. Given their periodically arranged building blocks, they also offer interesting parallels with crystalline materials. They can be processed in multiple forms and at different scales, and cross-linking their organic ligands via heat treatment leads to a boost of their mechanical properties. This study shows, via X-ray and in situ scanning transmission electron microscopy (STEM) analyses, how each of these processing steps plays a distinct role in the generation, migration, interaction, and healing of supercrystalline defects. Pressing of SCNCs into bulk pellets leads to a distortion of the otherwise fcc superlattice, while emulsion-templated self-assembly yields supraparticles (SPs) with stacking faults and size-dependent symmetries. Heat treatment at the same temperatures as those applied for the organic cross-linking has significant effects on planar defects. Stacking faults migrate and get healed, as also confirmed via molecular dynamics simulations, and intersupercrystalline “grain” boundaries migrate via anisotropic motion of disconnections. These rearrangements of defects at the supercrystalline scale (tens of nanometers) in nanocomposites with high mechanical properties (compressive strength of 100–500 MPa) provide insights into the formation and evolution of ordered assemblies of functionalized nanoparticles. 000644459 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0 000644459 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1 000644459 536__ $$0G:(DE-H253)I-20190118$$aFS-Proposal: I-20190118 (I-20190118)$$cI-20190118$$x2 000644459 536__ $$0G:(GEPRIS)192346071$$aDFG project G:(GEPRIS)192346071 - SFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3 (192346071)$$c192346071$$x3 000644459 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000644459 693__ $$0EXP:(DE-H253)P-P10-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P10-20150101$$aPETRA III$$fPETRA Beamline P10$$x0 000644459 693__ $$0EXP:(DE-H253)Nanolab-04-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-04-20150101$$aNanolab$$eDESY NanoLab: Microscopy$$x1 000644459 7001_ $$aYan, Cong$$b1 000644459 7001_ $$00009-0008-6042-1364$$aGürsoy, Emre$$b2 000644459 7001_ $$aSternlicht, Hadas$$b3 000644459 7001_ $$aPlunkett, Alexander$$b4 000644459 7001_ $$0P:(DE-H253)PIP1081989$$aBor, Büsra$$b5 000644459 7001_ $$0P:(DE-H253)PIP1015956$$aKim, Young Yong$$b6 000644459 7001_ $$0P:(DE-H253)PIP1026644$$aAssalauova, Dameli$$b7 000644459 7001_ $$0P:(DE-H253)PIP1006002$$aWestermeier, Fabian$$b8 000644459 7001_ $$0P:(DE-H253)PIP1007141$$aSprung, Michael$$b9 000644459 7001_ $$aKrekeler, Tobias$$b10 000644459 7001_ $$0P:(DE-H253)PIP1094930$$aRout, Surya S.$$b11 000644459 7001_ $$aRitter, Martin$$b12 000644459 7001_ $$0P:(DE-H253)PIP1025923$$aKulkarni, Satishkumar$$b13 000644459 7001_ $$0P:(DE-H253)PIP1019138$$aKeller, Thomas F.$$b14 000644459 7001_ $$0P:(DE-H253)PIP1011038$$aSchneider, Gerold$$b15 000644459 7001_ $$00000-0002-9327-0450$$aVonbun-Feldbauer, Gregor B.$$b16 000644459 7001_ $$0P:(DE-H253)PIP1093118$$aMeissner, Robert$$b17 000644459 7001_ $$0P:(DE-H253)PIP1012873$$aStierle, Andreas$$b18 000644459 7001_ $$0P:(DE-H253)PIP1003481$$aVartanyants, Ivan A.$$b19 000644459 7001_ $$0P:(DE-H253)PIP1033439$$aGiuntini, Diletta$$b20 000644459 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.5c16138$$gVol. 19, no. 51, p. 42881 - 42896$$n51$$p42881 - 42896$$tACS nano$$v19$$x1936-0851$$y2025 000644459 8564_ $$uhttps://bib-pubdb1.desy.de/record/644459/files/defect-migration-in-supercrystalline-nanocomposites%20%281%29.pdf$$yOpenAccess 000644459 8564_ $$uhttps://bib-pubdb1.desy.de/record/644459/files/defect-migration-in-supercrystalline-nanocomposites%20%281%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000644459 909CO $$ooai:bib-pubdb1.desy.de:644459$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1081202$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY 000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081202$$aExternal Institute$$b0$$kExtern 000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1081202$$aEuropean XFEL$$b0$$kXFEL.EU 000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081989$$aExternal Institute$$b5$$kExtern 000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015956$$aExternal Institute$$b6$$kExtern 000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1015956$$aEuropean XFEL$$b6$$kXFEL.EU 000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1015956$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY 000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1026644$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY 000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1026644$$aExternal Institute$$b7$$kExtern 000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1026644$$aEuropean XFEL$$b7$$kXFEL.EU 000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006002$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY 000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006002$$aEuropean XFEL$$b8$$kXFEL.EU 000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007141$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY 000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1007141$$aEuropean XFEL$$b9$$kXFEL.EU 000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094930$$aExternal Institute$$b11$$kExtern 000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1025923$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY 000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019138$$aDeutsches Elektronen-Synchrotron$$b14$$kDESY 000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1019138$$aEuropean XFEL$$b14$$kXFEL.EU 000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011038$$aExternal Institute$$b15$$kExtern 000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093118$$aExternal Institute$$b17$$kExtern 000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012873$$aDeutsches Elektronen-Synchrotron$$b18$$kDESY 000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1012873$$aEuropean XFEL$$b18$$kXFEL.EU 000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003481$$aDeutsches Elektronen-Synchrotron$$b19$$kDESY 000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1003481$$aEuropean XFEL$$b19$$kXFEL.EU 000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1003481$$aExternal Institute$$b19$$kExtern 000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1033439$$aExternal Institute$$b20$$kExtern 000644459 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0 000644459 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1 000644459 9141_ $$y2025 000644459 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07 000644459 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07 000644459 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000644459 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS NANO : 2022$$d2025-01-07 000644459 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07 000644459 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07 000644459 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07 000644459 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000644459 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2022$$d2025-01-07 000644459 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07 000644459 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07 000644459 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0 000644459 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x1 000644459 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x2 000644459 9201_ $$0I:(DE-H253)FS-PS-20131107$$kFS-PS$$lFS-Photon Science$$x3 000644459 980__ $$ajournal 000644459 980__ $$aVDB 000644459 980__ $$aUNRESTRICTED 000644459 980__ $$aI:(DE-H253)FS_DOOR-User-20241023 000644459 980__ $$aI:(DE-H253)FS-PETRA-S-20210408 000644459 980__ $$aI:(DE-H253)FS-NL-20120731 000644459 980__ $$aI:(DE-H253)FS-PS-20131107 000644459 9801_ $$aFullTexts