000644459 001__ 644459
000644459 005__ 20260123102725.0
000644459 0247_ $$2doi$$a10.1021/acsnano.5c16138
000644459 0247_ $$2ISSN$$a1936-0851
000644459 0247_ $$2ISSN$$a1936-086X
000644459 0247_ $$2datacite_doi$$a10.3204/PUBDB-2026-00336
000644459 037__ $$aPUBDB-2026-00336
000644459 041__ $$aEnglish
000644459 082__ $$a540
000644459 1001_ $$0P:(DE-H253)PIP1081202$$aLapkin, Dmitrii$$b0$$eCorresponding author$$udesy
000644459 245__ $$aDefect Migration in Supercrystalline Nanocomposites
000644459 260__ $$aWashington, DC$$bSoc.$$c2025
000644459 3367_ $$2DRIVER$$aarticle
000644459 3367_ $$2DataCite$$aOutput Types/Journal article
000644459 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769077521_4058267
000644459 3367_ $$2BibTeX$$aARTICLE
000644459 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000644459 3367_ $$00$$2EndNote$$aJournal Article
000644459 520__ $$aSupercrystalline nanocomposites (SCNCs) are nanostructured hybrid materials with a variety of unique functional properties. Given their periodically arranged building blocks, they also offer interesting parallels with crystalline materials. They can be processed in multiple forms and at different scales, and cross-linking their organic ligands via heat treatment leads to a boost of their mechanical properties. This study shows, via X-ray and in situ scanning transmission electron microscopy (STEM) analyses, how each of these processing steps plays a distinct role in the generation, migration, interaction, and healing of supercrystalline defects. Pressing of SCNCs into bulk pellets leads to a distortion of the otherwise fcc superlattice, while emulsion-templated self-assembly yields supraparticles (SPs) with stacking faults and size-dependent symmetries. Heat treatment at the same temperatures as those applied for the organic cross-linking has significant effects on planar defects. Stacking faults migrate and get healed, as also confirmed via molecular dynamics simulations, and intersupercrystalline “grain” boundaries migrate via anisotropic motion of disconnections. These rearrangements of defects at the supercrystalline scale (tens of nanometers) in nanocomposites with high mechanical properties (compressive strength of 100–500 MPa) provide insights into the formation and evolution of ordered assemblies of functionalized nanoparticles.
000644459 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000644459 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000644459 536__ $$0G:(DE-H253)I-20190118$$aFS-Proposal: I-20190118 (I-20190118)$$cI-20190118$$x2
000644459 536__ $$0G:(GEPRIS)192346071$$aDFG project G:(GEPRIS)192346071 - SFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3 (192346071)$$c192346071$$x3
000644459 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000644459 693__ $$0EXP:(DE-H253)P-P10-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P10-20150101$$aPETRA III$$fPETRA Beamline P10$$x0
000644459 693__ $$0EXP:(DE-H253)Nanolab-04-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-04-20150101$$aNanolab$$eDESY NanoLab: Microscopy$$x1
000644459 7001_ $$aYan, Cong$$b1
000644459 7001_ $$00009-0008-6042-1364$$aGürsoy, Emre$$b2
000644459 7001_ $$aSternlicht, Hadas$$b3
000644459 7001_ $$aPlunkett, Alexander$$b4
000644459 7001_ $$0P:(DE-H253)PIP1081989$$aBor, Büsra$$b5
000644459 7001_ $$0P:(DE-H253)PIP1015956$$aKim, Young Yong$$b6
000644459 7001_ $$0P:(DE-H253)PIP1026644$$aAssalauova, Dameli$$b7
000644459 7001_ $$0P:(DE-H253)PIP1006002$$aWestermeier, Fabian$$b8
000644459 7001_ $$0P:(DE-H253)PIP1007141$$aSprung, Michael$$b9
000644459 7001_ $$aKrekeler, Tobias$$b10
000644459 7001_ $$0P:(DE-H253)PIP1094930$$aRout, Surya S.$$b11
000644459 7001_ $$aRitter, Martin$$b12
000644459 7001_ $$0P:(DE-H253)PIP1025923$$aKulkarni, Satishkumar$$b13
000644459 7001_ $$0P:(DE-H253)PIP1019138$$aKeller, Thomas F.$$b14
000644459 7001_ $$0P:(DE-H253)PIP1011038$$aSchneider, Gerold$$b15
000644459 7001_ $$00000-0002-9327-0450$$aVonbun-Feldbauer, Gregor B.$$b16
000644459 7001_ $$0P:(DE-H253)PIP1093118$$aMeissner, Robert$$b17
000644459 7001_ $$0P:(DE-H253)PIP1012873$$aStierle, Andreas$$b18
000644459 7001_ $$0P:(DE-H253)PIP1003481$$aVartanyants, Ivan A.$$b19
000644459 7001_ $$0P:(DE-H253)PIP1033439$$aGiuntini, Diletta$$b20
000644459 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.5c16138$$gVol. 19, no. 51, p. 42881 - 42896$$n51$$p42881 - 42896$$tACS nano$$v19$$x1936-0851$$y2025
000644459 8564_ $$uhttps://bib-pubdb1.desy.de/record/644459/files/defect-migration-in-supercrystalline-nanocomposites%20%281%29.pdf$$yOpenAccess
000644459 8564_ $$uhttps://bib-pubdb1.desy.de/record/644459/files/defect-migration-in-supercrystalline-nanocomposites%20%281%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000644459 909CO $$ooai:bib-pubdb1.desy.de:644459$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1081202$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081202$$aExternal Institute$$b0$$kExtern
000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1081202$$aEuropean XFEL$$b0$$kXFEL.EU
000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081989$$aExternal Institute$$b5$$kExtern
000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015956$$aExternal Institute$$b6$$kExtern
000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1015956$$aEuropean XFEL$$b6$$kXFEL.EU
000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1015956$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1026644$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1026644$$aExternal Institute$$b7$$kExtern
000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1026644$$aEuropean XFEL$$b7$$kXFEL.EU
000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006002$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006002$$aEuropean XFEL$$b8$$kXFEL.EU
000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007141$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY
000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1007141$$aEuropean XFEL$$b9$$kXFEL.EU
000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094930$$aExternal Institute$$b11$$kExtern
000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1025923$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY
000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019138$$aDeutsches Elektronen-Synchrotron$$b14$$kDESY
000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1019138$$aEuropean XFEL$$b14$$kXFEL.EU
000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011038$$aExternal Institute$$b15$$kExtern
000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093118$$aExternal Institute$$b17$$kExtern
000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012873$$aDeutsches Elektronen-Synchrotron$$b18$$kDESY
000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1012873$$aEuropean XFEL$$b18$$kXFEL.EU
000644459 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003481$$aDeutsches Elektronen-Synchrotron$$b19$$kDESY
000644459 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1003481$$aEuropean XFEL$$b19$$kXFEL.EU
000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1003481$$aExternal Institute$$b19$$kExtern
000644459 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1033439$$aExternal Institute$$b20$$kExtern
000644459 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000644459 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000644459 9141_ $$y2025
000644459 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000644459 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000644459 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000644459 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS NANO : 2022$$d2025-01-07
000644459 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
000644459 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000644459 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000644459 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000644459 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2022$$d2025-01-07
000644459 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000644459 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000644459 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000644459 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x1
000644459 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x2
000644459 9201_ $$0I:(DE-H253)FS-PS-20131107$$kFS-PS$$lFS-Photon Science$$x3
000644459 980__ $$ajournal
000644459 980__ $$aVDB
000644459 980__ $$aUNRESTRICTED
000644459 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000644459 980__ $$aI:(DE-H253)FS-PETRA-S-20210408
000644459 980__ $$aI:(DE-H253)FS-NL-20120731
000644459 980__ $$aI:(DE-H253)FS-PS-20131107
000644459 9801_ $$aFullTexts