000643557 001__ 643557
000643557 005__ 20260121091502.0
000643557 0247_ $$2doi$$a10.1039/D5NR00594A
000643557 0247_ $$2ISSN$$a2040-3364
000643557 0247_ $$2ISSN$$a2040-3372
000643557 037__ $$aPUBDB-2026-00287
000643557 041__ $$aEnglish
000643557 082__ $$a600
000643557 1001_ $$0P:(DE-H253)PIP1090283$$aMarks, Melissa Jane$$b0
000643557 245__ $$aTracking 2D-to-3D crystal growth of a layered material in situ with X-ray scattering
000643557 260__ $$aCambridge$$bRSC Publ.$$c2025
000643557 3367_ $$2DRIVER$$aarticle
000643557 3367_ $$2DataCite$$aOutput Types/Journal article
000643557 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768816936_5261
000643557 3367_ $$2BibTeX$$aARTICLE
000643557 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000643557 3367_ $$00$$2EndNote$$aJournal Article
000643557 500__ $$aWaiting for fulltext 
000643557 520__ $$aThe dimensionality of a layered material, i.e. the number of 2D layers bound together, is a structural property underpinning the functional properties of the material. Uncovering synthetic methodologies for controlling dimensionality is therefore crucial for enabling the targeted design of high-functioning materials. This in situ X-ray total scattering study demonstrates the crystal growth of anisotropic Bi24O31Br10, a layered material increasingly utilised for its promising photocatalytic properties. Interlayer and intralayer crystal growth were facilitated by calcining Bi24O31Br10 over the temperature range of 30–600 °C. Analyses of the scattering data were conducted in reciprocal space and real space, combining model-free, model-based, and simulation-based analyses, with all conferring that the Bi24O31Br10 sample exhibits low dimensionality at lower temperatures, which gradually transitions to higher dimensionality as the calcination temperature increases. The inevitable thermal effects brought on by conducting measurements at elevated temperatures were analysed using the Python package, diffpy.morph, facilitating insight into the extent of thermal expansion and vibration throughout the data series, which in turn facilitated a focused analysis of crystal growth in an anisotropic nanomaterial. This study provides novel insight into structural analyses of 2D-to-3D transitions in anisotropic nanomaterials via X-ray scattering, and contributes significantly to the structural understanding of an emerging functional layered material.
000643557 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000643557 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000643557 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000643557 693__ $$0EXP:(DE-H253)P-P02.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P02.1-20150101$$aPETRA III$$fPETRA Beamline P02.1$$x0
000643557 7001_ $$0P:(DE-H253)PIP1100654$$aFrank, Sara$$b1
000643557 7001_ $$0P:(DE-H253)PIP1103510$$aHenriksen, Martin Lahn$$b2
000643557 7001_ $$0P:(DE-H253)PIP1080153$$aJeppesen, Henrik$$b3
000643557 7001_ $$0P:(DE-H253)PIP1016611$$aLock, Nina$$b4$$eCorresponding author
000643557 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/D5NR00594A$$gVol. 17, no. 29, p. 17159 - 17173$$n29$$p17159 - 17173$$tNanoscale$$v17$$x2040-3364$$y2025
000643557 8564_ $$uhttps://bib-pubdb1.desy.de/record/643557/files/d5nr00594a.pdf$$yRestricted
000643557 8564_ $$uhttps://bib-pubdb1.desy.de/record/643557/files/d5nr00594a.pdf?subformat=pdfa$$xpdfa$$yRestricted
000643557 909CO $$ooai:bib-pubdb1.desy.de:643557$$pVDB
000643557 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090283$$aExternal Institute$$b0$$kExtern
000643557 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100654$$aExternal Institute$$b1$$kExtern
000643557 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103510$$aExternal Institute$$b2$$kExtern
000643557 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1080153$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000643557 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1080153$$aExternal Institute$$b3$$kExtern
000643557 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1016611$$aExternal Institute$$b4$$kExtern
000643557 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000643557 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000643557 9141_ $$y2025
000643557 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
000643557 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
000643557 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
000643557 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
000643557 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
000643557 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
000643557 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
000643557 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
000643557 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2022$$d2024-12-10
000643557 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2022$$d2024-12-10
000643557 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x0
000643557 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x1
000643557 980__ $$ajournal
000643557 980__ $$aVDB
000643557 980__ $$aI:(DE-H253)FS-PET-D-20190712
000643557 980__ $$aI:(DE-H253)HAS-User-20120731
000643557 980__ $$aUNRESTRICTED