001     643556
005     20260115133644.0
024 7 _ |a 10.1002/adfm.202505935
|2 doi
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
037 _ _ |a PUBDB-2026-00286
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Pan, Guangjiu
|0 P:(DE-H253)PIP1101059
|b 0
245 _ _ |a Kinetic Insights into Precursor‐Assisted Soft Sphere Close Packing Revealed by In Situ GISAXS with Implications for Gas Sensing
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768480453_1829946
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a online first
520 _ _ |a Packing of soft spheres, such as micelles, polymer-grafted particles, and microgels, enables the creation of diverse functional materials. Despite the importance of achieving precise structural control, understanding the kinetics of non-equilibrium packing in a large-scale deposition process remains challenging. This study investigates the kinetics of the precursor-assisted close packing of soft spheres using block copolymer micelles as the sphere model. Adding the inorganic precursor SnCl4 is crucial for achieving the close packing, which is versatile and provides a robust platform for tailoring mesoporous materials with tunable pore sizes. The kinetics of the close-packing process are explored by in situ grazing-incidence small-angle X-ray scattering measurements during slot-die coating. The soft crystallization process shows six distinct stages: dilute dispersion, concentrated dispersion, wet film, structuring wet film, gel film, and glassy film. The close packing develops first in the in-plane direction with rapid domain growth and then advances in the out-of-plane direction. Precursors in the interstitial voids play a key role by mitigating packing frustration and favoring face-centered cubic (FCC) ordering. The structure finally stabilizes into a well-ordered FCC structure with large domain sizes. The derived mesoporous SnO2 features semiconducting properties and enhanced pore connectivity, thus showing superior gas sensing performance toward ethanol.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P03
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P03-20150101
|6 EXP:(DE-H253)P-P03-20150101
|x 0
700 1 _ |a Xie, Wenhe
|b 1
700 1 _ |a Liang, Suzhe
|0 P:(DE-H253)PIP1090405
|b 2
700 1 _ |a Tian, Ting
|b 3
700 1 _ |a Yin, Shanshan
|0 P:(DE-H253)PIP1086085
|b 4
700 1 _ |a Li, Lixing
|0 P:(DE-H253)PIP1111579
|b 5
700 1 _ |a Buyan-Arivjikh, Altantulga
|0 P:(DE-H253)PIP1086580
|b 6
700 1 _ |a Zhang, Jinsheng
|0 P:(DE-H253)PIP1104398
|b 7
700 1 _ |a Baier, Thomas
|0 P:(DE-H253)PIP1106392
|b 8
700 1 _ |a Xu, Zhuijun
|0 P:(DE-H253)PIP1101338
|b 9
700 1 _ |a Schwartzkopf, Matthias
|0 P:(DE-H253)PIP1010504
|b 10
700 1 _ |a Koyiloth Vayalil, Sarathlal
|0 P:(DE-H253)PIP1015063
|b 11
700 1 _ |a Roth, Stephan V.
|0 P:(DE-H253)PIP1003299
|b 12
700 1 _ |a Deng, Yonghui
|b 13
700 1 _ |a Müller-Buschbaum, Peter
|0 P:(DE-H253)PIP1007825
|b 14
773 _ _ |a 10.1002/adfm.202505935
|g p. e05935
|0 PERI:(DE-600)2039420-2
|n x
|p e05935
|t Advanced functional materials
|v x
|y 2025
|x 1616-301X
856 4 _ |u https://bib-pubdb1.desy.de/record/643556/files/Adv%20Funct%20Materials%20-%202025%20-%20Pan%20-%20Kinetic%20Insights%20into%20Precursor%E2%80%90Assisted%20Soft%20Sphere%20Close%20Packing%20Revealed%20by%20In%20Situ.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/643556/files/Adv%20Funct%20Materials%20-%202025%20-%20Pan%20-%20Kinetic%20Insights%20into%20Precursor%E2%80%90Assisted%20Soft%20Sphere%20Close%20Packing%20Revealed%20by%20In%20Situ.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1101059
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1090405
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1086085
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1111579
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1086580
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1104398
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1106392
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1101338
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1010504
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1015063
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1015063
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1003299
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 12
|6 P:(DE-H253)PIP1003299
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1007825
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV FUNCT MATER : 2022
|d 2024-12-16
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 1
920 1 _ |0 I:(DE-H253)FS-SMA-20220811
|k FS-SMA
|l Sustainable Materials
|x 2
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 _ _ |a I:(DE-H253)FS-SMA-20220811
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21