000643552 001__ 643552
000643552 005__ 20260121091501.0
000643552 0247_ $$2doi$$a10.1021/acsnano.5c11890
000643552 0247_ $$2ISSN$$a1936-0851
000643552 0247_ $$2ISSN$$a1936-086X
000643552 037__ $$aPUBDB-2026-00282
000643552 041__ $$aEnglish
000643552 082__ $$a540
000643552 1001_ $$aKaranje, Renuka$$b0
000643552 245__ $$aOrbital Angular Momentum-Driven Ferromagnetism with Magnetic Anisotropy and Electronic Structure of Epitaxial Neodymium Nitride
000643552 260__ $$aWashington, DC$$bSoc.$$c2025
000643552 3367_ $$2DRIVER$$aarticle
000643552 3367_ $$2DataCite$$aOutput Types/Journal article
000643552 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768816484_5267
000643552 3367_ $$2BibTeX$$aARTICLE
000643552 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000643552 3367_ $$00$$2EndNote$$aJournal Article
000643552 500__ $$aWaiting for fulltext
000643552 520__ $$aNeodymium-based permanent magnets are fundamental to modern technologies, underpinning high-performance applications in electronics, renewable energy, and advanced medical systems. Among emerging neodymium compounds, neodymium nitride (NdN) has attracted significant attention due to its unique electronic structure, where strongly localized 4f orbitals and strong spin–orbit coupling are anticipated to drive exceptional magnetic behavior. Here, we show conclusive experimental evidence of orbital angular momentum-driven ferromagnetic ordering and prominent magnetic anisotropy in epitaxial, near-stoichiometric NdN thin films synthesized using ultrahigh vacuum deposition techniques. Magnetization and X-ray magnetic circular dichroism measurements reveal a dominant 4f orbital moment of 5.14 μB, contributing to a total magnetic moment of 2.43 μB per formula unit at 4 K, close to the first-principles density functional theory calculated values. Complementary synchrotron-radiation photoelectron spectroscopy, along with the theoretical calculations, uncovers occupied 4f states ∼6.4 eV below the Fermi level, contributing to the orbital-driven ferromagnetism in NdN. Moreover, the high crystalline quality of the NdN films is further supported by the structural characterization and vibrational properties. The intrinsic orbital angular momentum-driven magnetism of NdN positions it as a promising platform for next-generation orbitronic devices beyond conventional spintronics.
000643552 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000643552 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000643552 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000643552 7001_ $$aBera, Anupam$$b1
000643552 7001_ $$aRudra, Sourav$$b2
000643552 7001_ $$aMukhopadhyay, Debmalya$$b3
000643552 7001_ $$aBanerjee, Souvik$$b4
000643552 7001_ $$aBansal, Manisha$$b5
000643552 7001_ $$aBaraik, Kiran$$b6
000643552 7001_ $$0P:(DE-H253)PIP1086088$$aChowdhury, Sourav$$b7
000643552 7001_ $$aLi, Weibin$$b8
000643552 7001_ $$00000-0003-4895-8114$$aValvidares, Manuel$$b9
000643552 7001_ $$00000-0003-4386-1006$$aMaity, Tuhin$$b10
000643552 7001_ $$0P:(DE-H253)PIP1024121$$aSaha, Bivas$$b11$$eCorresponding author
000643552 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.5c11890$$gVol. 19, no. 41, p. 36636 - 36645$$n41$$p36636 - 36645$$tACS nano$$v19$$x1936-0851$$y2025
000643552 8564_ $$uhttps://bib-pubdb1.desy.de/record/643552/files/orbital-angular-momentum-driven-ferromagnetism-with-magnetic-anisotropy-and-electronic-structure-of-epitaxial-neodymium.pdf$$yRestricted
000643552 8564_ $$uhttps://bib-pubdb1.desy.de/record/643552/files/orbital-angular-momentum-driven-ferromagnetism-with-magnetic-anisotropy-and-electronic-structure-of-epitaxial-neodymium.pdf?subformat=pdfa$$xpdfa$$yRestricted
000643552 909CO $$ooai:bib-pubdb1.desy.de:643552$$pVDB
000643552 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086088$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000643552 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086088$$aExternal Institute$$b7$$kExtern
000643552 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1024121$$aExternal Institute$$b11$$kExtern
000643552 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000643552 9141_ $$y2025
000643552 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000643552 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000643552 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000643552 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
000643552 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000643552 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000643552 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000643552 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2022$$d2025-01-07
000643552 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS NANO : 2022$$d2025-01-07
000643552 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x0
000643552 980__ $$ajournal
000643552 980__ $$aVDB
000643552 980__ $$aI:(DE-H253)FS-PETRA-S-20210408
000643552 980__ $$aUNRESTRICTED