000643455 001__ 643455
000643455 005__ 20260114213538.0
000643455 0247_ $$2doi$$a10.1016/j.matchar.2026.116012
000643455 0247_ $$2ISSN$$a1044-5803
000643455 0247_ $$2ISSN$$a1873-4189
000643455 037__ $$aPUBDB-2026-00216
000643455 041__ $$aEnglish
000643455 082__ $$a670
000643455 1001_ $$aQiu, Nianshuang$$b0
000643455 245__ $$aMicrostructure after quenching and precipitation behavior during tempering in Fe–Cu–Ni–Al steels
000643455 260__ $$aNew York, NY$$bScience Direct$$c2026
000643455 3367_ $$2DRIVER$$aarticle
000643455 3367_ $$2DataCite$$aOutput Types/Journal article
000643455 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768395719_3311982
000643455 3367_ $$2BibTeX$$aARTICLE
000643455 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000643455 3367_ $$00$$2EndNote$$aJournal Article
000643455 500__ $$aWaiting for fulltext
000643455 520__ $$aThis study investigates the microstructure after quenching and the precipitation behavior during subsequent tempering in Fe-2.5Ni-0.5Al, Fe-2.5Cu, and Fe-2.5Cu-2.5Ni-0.5Al (wt%) steels, with and without Mo additions. All alloys were solution-treated at 900 °C for 60 min, followed by quenching and tempering at 550 °C for up to 40 min. Microstructure and precipitation characteristics were analyzed using microscopy, atom probe tomography, and in situ small-angle X-ray scattering, supported by thermodynamic calculations and continuous cooling transformation diagram simulations. The Fe-Ni-Al steels (with or without Mo) exhibited a ferritic–bainitic microstructure. The Fe-Cu steel was primarily ferritic, while Mo addition promoted a ferritic-bainitic structure. The Fe-Cu-Ni-Al steel displayed a ferritic–martensitic microstructure, which transformed into a fully martensitic structure with Mo addition. During tempering, no precipitates were detected in the Fe-2.5Ni-0.5Al steel, whereas Cu-rich precipitates formed in both Fe-2.5Cu and Fe-2.5Cu-2.5Ni-0.5Al steels. The enhanced bainitic/martensitic transformation induced by Mo addition resulted in a higher dislocation density after quenching, which facilitated Cu precipitate nucleation during tempering. Hybrid Monte Carlo/Molecular Dynamics simulation confirm that Mo alters the matrix distortion in Fe-2.5Cu-2.5Ni-0.5Al steel, a key factor influencing nucleation and precipitation kinetics. Moreover, the addition of Mo reduced precipitate growth and coarsening, contributing to the retention of high hardness after tempering.
000643455 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000643455 536__ $$0G:(DE-HGF)2020_Join2-SWEDEN-DESY$$aSWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)$$c2020_Join2-SWEDEN-DESY$$x1
000643455 536__ $$0G:(DE-H253)I-20220848-EC$$aFS-Proposal: I-20220848 EC (I-20220848-EC)$$cI-20220848-EC$$x2
000643455 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000643455 693__ $$0EXP:(DE-H253)P-P21.2-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.2-20150101$$aPETRA III$$fPETRA Beamline P21.2$$x0
000643455 7001_ $$0P:(DE-H253)PIP1097248$$aZhou, Tao$$b1$$eCorresponding author
000643455 7001_ $$0P:(DE-H253)PIP1097149$$aSpartacus, Gabriel$$b2
000643455 7001_ $$aGuehairia, Sonia$$b3
000643455 7001_ $$aMeng, Zhichao$$b4
000643455 7001_ $$0P:(DE-HGF)0$$aZuo, Xiaowei$$b5$$eCorresponding author
000643455 7001_ $$0P:(DE-H253)PIP1015545$$aHedström, Peter$$b6
000643455 773__ $$0PERI:(DE-600)1491951-5$$a10.1016/j.matchar.2026.116012$$gVol. 232, p. 116012 -$$p116012 $$tMaterials characterization$$v232$$x1044-5803$$y2026
000643455 8564_ $$uhttps://bib-pubdb1.desy.de/record/643455/files/1-s2.0-S1044580326000483-main.pdf$$yRestricted
000643455 8564_ $$uhttps://bib-pubdb1.desy.de/record/643455/files/1-s2.0-S1044580326000483-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000643455 909CO $$ooai:bib-pubdb1.desy.de:643455$$pVDB
000643455 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097248$$aExternal Institute$$b1$$kExtern
000643455 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097149$$aExternal Institute$$b2$$kExtern
000643455 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015545$$aExternal Institute$$b6$$kExtern
000643455 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000643455 9141_ $$y2026
000643455 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER CHARACT : 2022$$d2025-01-06
000643455 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000643455 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000643455 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
000643455 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
000643455 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000643455 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-06
000643455 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000643455 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000643455 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000643455 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-06
000643455 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000643455 980__ $$ajournal
000643455 980__ $$aVDB
000643455 980__ $$aI:(DE-H253)HAS-User-20120731
000643455 980__ $$aUNRESTRICTED