000643315 001__ 643315
000643315 005__ 20260108134926.0
000643315 037__ $$aPUBDB-2026-00121
000643315 1001_ $$0P:(DE-H253)PIP1089766$$aSukharnikov, Vladislav$$b0$$gmale
000643315 245__ $$aNumerically Efficient Theoretical Frameworks for Collective Spontaneous Emission
000643315 260__ $$c2025
000643315 3367_ $$2DataCite$$aOutput Types/Dissertation
000643315 3367_ $$2ORCID$$aDISSERTATION
000643315 3367_ $$2BibTeX$$aPHDTHESIS
000643315 3367_ $$02$$2EndNote$$aThesis
000643315 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1767876437_1893144
000643315 3367_ $$2DRIVER$$adoctoralThesis
000643315 502__ $$aDissertation, University of Hamburg, 2025$$bDissertation$$cUniversity of Hamburg$$d2025
000643315 520__ $$aCooperative spontaneous emission, or superradiance, occurs when a group of excited atoms emit light coherently in an intense burst due to synchronized dipole moments. This phenomenon is significant for applications in spectroscopy, metrology, and high-brightness light sources. Modeling such collective emission is challenging for large atomic systems, prompting the development of efficient numerical frameworks. This dissertation introduces a second-quantized formalism in Liouville space and a stochastic approach based on the positive P-representation. These methods are applied to study compact systems of multi-level emitters under incoherent pumping and decoherence. Numerical results benchmark the two approaches and highlight their utility and limitations for simulating many-body quantum effects.
000643315 536__ $$0G:(DE-HGF)2019_IVF-HIDSS-0002$$aHIDSS-0002 - DASHH: Data Science in Hamburg - Helmholtz Graduate School for the Structure of Matter (2019_IVF-HIDSS-0002)$$c2019_IVF-HIDSS-0002$$x0
000643315 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089766$$aExternal Institute$$b0$$kExtern
000643315 920__ $$lyes
000643315 9801_ $$aEXTERN4COORD
000643315 980__ $$aphd
000643315 980__ $$aUSER
000643315 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000643315 980__ $$aI:(DE-H253)FS-TUX-20170422