001     643276
005     20260122095251.0
024 7 _ |a 10.1103/r6sr-dv13
|2 doi
024 7 _ |a Alexandrou:2025vaj
|2 INSPIRETeX
024 7 _ |a inspire:2913777
|2 inspire
024 7 _ |a 2470-0010
|2 ISSN
024 7 _ |a 2470-0037
|2 ISSN
024 7 _ |a 2470-0029
|2 ISSN
024 7 _ |a arXiv:2504.13760
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2026-00082
|2 datacite_doi
037 _ _ |a PUBDB-2026-00082
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2504.13760
|2 arXiv
100 1 _ |a Alexandrou, Constantia
|b 0
245 _ _ |a Realizing string breaking dynamics in a $\mathbb{Z}_2$ lattice gauge theory on quantum hardware
260 _ _ |a Ridge, NY
|c 2025
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768984964_1285346
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a cc-by, 17 pages, 19 figures
520 _ _ |a We investigate static and dynamical aspects of string breaking in a $\mathbb{Z}_2$ lattice gauge theory coupled to Kogut-Susskind staggered fermions. Using tensor network simulations, we demonstrate that the static potential as well as the site-resolved configuration of the matter sites and gauge links allows us to identify the regimes in which string breaking occurs. Furthermore, we develop a variational quantum eigensolver that allows for reliably preparing the ground state of the theory in both the absence and presence of static charges and to capture the static aspects of the phenomenon. Carrying out state preparation on real quantum hardware for up to 19 qubits, we demonstrate its suitability for current quantum devices. In addition, we study the real-time dynamics of a flux tube between two static charges using both tensor networks and quantum hardware. Using a trotterization for the time-evolution operator, we are able to show that the breaking process starts with the creation of charges inside the string. These eventually redistribute toward the static charges and screen them, which leads to the breaking of the flux tube.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a AQTIVATE - Advanced computing, quantum algorithms, and data-driven approaches for science, technology and engineering (101072344)
|0 G:(EU-Grant)101072344
|c 101072344
|f HORIZON-MSCA-2021-DN-01
|x 1
536 _ _ |a SimEA - Modeling and Simulation for Engineering Applications (810660)
|0 G:(EU-Grant)810660
|c 810660
|f H2020-WIDESPREAD-03-2017-ERAChairs
|x 2
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Athenodorou, Andreas
|b 1
700 1 _ |a Blekos, Kostas
|0 0000-0002-6777-2107
|b 2
700 1 _ |a Polykratis, Georgios
|b 3
700 1 _ |a Kuehn, Stefan
|0 P:(DE-H253)PIP1086314
|b 4
|e Corresponding author
|u desy
773 _ _ |a 10.1103/r6sr-dv13
|g Vol. 112, no. 11, p. 114506
|0 PERI:(DE-600)2844732-3
|n 11
|p 114506
|t Physical review / D
|v 112
|y 2025
|x 2470-0010
787 0 _ |a Alexandrou, Constantia et.al.
|d 2025
|i IsParent
|0 PUBDB-2025-01390
|r arXiv:2504.13760
|t Realizing string breaking dynamics in a $\mathbb{Z}_2$ lattice gauge theory on quantum hardware
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/643276/files/Helical_Motion_of_a_Particle_in_a_Multilayer_Cylindrical_Waveguide.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/643276/files/Helical_Motion_of_a_Particle_in_a_Multilayer_Cylindrical_Waveguide.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:643276
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1086314
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV D : 2022
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV D : 2022
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
920 1 _ |0 I:(DE-H253)CQTA-20221102
|k CQTA
|l Centre f. Quantum Techno. a. Application
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CQTA-20221102
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21