000643142 001__ 643142
000643142 005__ 20260109212437.0
000643142 0247_ $$2doi$$a10.1002/sstr.202500504
000643142 0247_ $$2datacite_doi$$a10.3204/PUBDB-2026-00040
000643142 037__ $$aPUBDB-2026-00040
000643142 041__ $$aEnglish
000643142 082__ $$a540
000643142 1001_ $$0P:(DE-H253)PIP1096318$$akalal, shailesh$$b0$$eCorresponding author
000643142 245__ $$aDefect Engineering in Ti‐Doped Ta$_3$N$_5$ Thin Films for Enhanced Photoelectrochemical Water Splitting: Electronic Structure Modulation and Charge Carrier Dynamics 
000643142 260__ $$aWeinheim$$bWiley-VCH$$c2026
000643142 3367_ $$2DRIVER$$aarticle
000643142 3367_ $$2DataCite$$aOutput Types/Journal article
000643142 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767950253_4095514
000643142 3367_ $$2BibTeX$$aARTICLE
000643142 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000643142 3367_ $$00$$2EndNote$$aJournal Article
000643142 500__ $$acc-by
000643142 520__ $$aTantalum nitride (Ta$_3$N$_5$) is a promising semiconductor for solar-driven photoelectrochemical (PEC) water splitting, but its performance is limited by intrinsic defects. Here, we investigate the effect of titanium (Ti) doping (0–10 at%) on the structural, compositional, and optoelectronic properties of Ta$_3$N$_5$ thin films. At low concentrations (<2 at%), Ti$^{4+}$ preferentially substitutes Ta at four-coordinated sites, enhancing nitrogen incorporation and suppressing defect states associated with under-coordinated Ta. This leads to improved carrier dynamics and prolonged electron–hole lifetimes. Higher doping levels (≥3.5 at%) result in occupation of three-coordinated sites, inducing increase in the oxygen content, lattice distortion, and defect formation that deteriorate carrier lifetimes. PEC measurements reveal that optimized Ti doping significantly reduces charge transfer resistance and nearly seven-fold increase in the photocurrent. These findings underscore the importance of controlled Ti doping for defect engineering and band structure tuning to boost the PEC performance of Ta$_3$N$_5$ thin films. 
000643142 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000643142 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000643142 536__ $$0G:(DE-HGF)2020_Join2-SWEDEN-DESY$$aSWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)$$c2020_Join2-SWEDEN-DESY$$x2
000643142 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000643142 693__ $$0EXP:(DE-H253)P-P22-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P22-20150101$$aPETRA III$$fPETRA Beamline P22$$x0
000643142 7001_ $$0P:(DE-H253)PIP1017987$$aMagnuson, Martin$$b1
000643142 7001_ $$00009-0004-3374-7407$$aChesini, Alessandro$$b2
000643142 7001_ $$0P:(DE-H253)PIP1104621$$aA, Akshaya$$b3
000643142 7001_ $$00000-0001-6215-2454$$aHonnali, Sanath Kumar$$b4
000643142 7001_ $$0P:(DE-H253)PIP1121488$$aSahoo, Sophia$$b5
000643142 7001_ $$00000-0001-6965-190X$$aJain, Nakul$$b6
000643142 7001_ $$00000-0002-1657-1858$$aBhattacharyya, Dibyendu$$b7
000643142 7001_ $$0P:(DE-H253)PIP1007694$$aGloskovskii, Andrei$$b8
000643142 7001_ $$0P:(DE-H253)PIP1015097$$aGupta, Mukul$$b9
000643142 7001_ $$0P:(DE-H253)PIP1103044$$aWang, Feng$$b10
000643142 7001_ $$00000-0001-5738-3231$$aOrlandi, Michele$$b11
000643142 7001_ $$0P:(DE-H253)PIP1098246$$aGreczynski, Grzegorz$$b12
000643142 7001_ $$00000-0003-2749-8008$$aJärrendahl, Kenneth$$b13
000643142 7001_ $$0P:(DE-H253)PIP1121474$$aEklund, Per$$b14
000643142 7001_ $$0P:(DE-H253)PIP1017976$$aBirch, Jens$$b15
000643142 7001_ $$0P:(DE-H253)PIP1024223$$aHsiao, Ching-Lien$$b16
000643142 773__ $$0PERI:(DE-600)3035497-3$$a10.1002/sstr.202500504$$gp. e202500504$$n1$$pe202500504$$tSmall structures$$v7$$x2688-4062$$y2026
000643142 8564_ $$uhttps://bib-pubdb1.desy.de/record/643142/files/Small%20Structures%20-%202025%20-%20Kalal%20-%20Defect%20Engineering%20in%20Ti%E2%80%90Doped%20Ta3N5%20Thin%20Films%20for%20Enhanced%20Photoelectrochemical%20Water.pdf$$yOpenAccess
000643142 8564_ $$uhttps://bib-pubdb1.desy.de/record/643142/files/Small%20Structures%20-%202025%20-%20Kalal%20-%20Defect%20Engineering%20in%20Ti%E2%80%90Doped%20Ta3N5%20Thin%20Films%20for%20Enhanced%20Photoelectrochemical%20Water.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000643142 909CO $$ooai:bib-pubdb1.desy.de:643142$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000643142 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096318$$aExternal Institute$$b0$$kExtern
000643142 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017987$$aExternal Institute$$b1$$kExtern
000643142 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104621$$aExternal Institute$$b3$$kExtern
000643142 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1121488$$aExternal Institute$$b5$$kExtern
000643142 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007694$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000643142 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015097$$aExternal Institute$$b9$$kExtern
000643142 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103044$$aExternal Institute$$b10$$kExtern
000643142 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098246$$aExternal Institute$$b12$$kExtern
000643142 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1121474$$aExternal Institute$$b14$$kExtern
000643142 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017976$$aExternal Institute$$b15$$kExtern
000643142 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1024223$$aExternal Institute$$b16$$kExtern
000643142 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000643142 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000643142 9141_ $$y2026
000643142 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-19
000643142 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-19
000643142 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-19
000643142 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000643142 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-19
000643142 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bSMALL STRUCT : 2022$$d2024-12-19
000643142 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL STRUCT : 2022$$d2024-12-19
000643142 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-19$$wger
000643142 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:03:47Z
000643142 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:03:47Z
000643142 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-19
000643142 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-19
000643142 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-19
000643142 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000643142 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-19
000643142 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-19
000643142 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-19
000643142 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-19
000643142 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-19
000643142 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x0
000643142 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x1
000643142 980__ $$ajournal
000643142 980__ $$aVDB
000643142 980__ $$aUNRESTRICTED
000643142 980__ $$aI:(DE-H253)FS-PETRA-S-20210408
000643142 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000643142 9801_ $$aFullTexts