TY - CONF AU - Boulton, Lewis Anthony AU - Beinortaite, Judita AU - Björklund Svensson, Jonas Halfdan AU - Burghart, Philipp AU - D'Arcy, Richard AU - Ferran Pousa, Angel AU - Foster, Brian AU - Gonzalez Caminal, Pau AU - Huck, Maryam AU - Jones, Harry AU - Kanekar, Advait AU - Lindstroem, Carl Andreas AU - Loisch, Gregor AU - Long, Tianyun AU - Maier, Andreas AU - Mewes, Steven Mathis AU - Osterhoff, Jens AU - Pena Asmus, Felipe Lars AU - Schröder, Sarah AU - Thévenet, Maxence AU - Wesch, Stephan AU - Wing, Matthew AU - Wood, Jonathan Christopher TI - Advanced Controls and Machine Learning at FLASHForward PB - DESY M1 - PUBDB-2025-05726 PY - 2025 AB - Plasma accelerators often constitute a high-noise environment with multiple, non-linear dependencies that make the setup and operation of such devices a difficult task. To address these challenges, Machine Learning methods have gained popularity in the field of plasma acceleration. In this contribution, we summarise the application of such techniques to the beam-driven plasma acceleration experiment FLASHForward at DESY, Hamburg. Examples include the automated tuning of the plasma stage via Bayesian Optimisation and the development of non-destructive, neural-network-based predictions of the resulting accelerated trailing-bunch spectra. T2 - 7th European Advanced Accelerator Conference CY - 21 Sep 2025 - 27 Sep 2025, Elba (Italy) Y2 - 21 Sep 2025 - 27 Sep 2025 M2 - Elba, Italy LB - PUB:(DE-HGF)6 UR - https://bib-pubdb1.desy.de/record/642930 ER -