001     642844
005     20251217123023.0
024 7 _ |a 10.1088/2632-2153/ae0def
|2 doi
037 _ _ |a PUBDB-2025-05650
082 _ _ |a 621.3
100 1 _ |a Drnevich, Matthew
|b 0
245 _ _ |a Neural quasiprobabilistic likelihood ratio estimation with negatively weighted data
260 _ _ |a Bristol
|c 2025
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765970789_3472940
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a MLST-IOPscience-Header.pngPurpose-Led Publishing logo.Part of the Machine Learning Series logo.Paper • The following article is Open accessNeural quasiprobabilistic likelihood ratio estimation with negatively weighted dataMatthew Drnevich, Stephen Jiggins*, Judith Katzy and Kyle CranmerPublished 28 October 2025 • © 2025 The Author(s). Published by IOP Publishing LtdMachine Learning: Science and Technology, Volume 6, Number 4Focus on ML and the Physical SciencesCitation Matthew Drnevich et al 2025 Mach. Learn.: Sci. Technol. 6 045023DOI 10.1088/2632-2153/ae0defDownload Article PDFArticle metrics172 Total downloads11 citation on Dimensions.SubmitSubmit to this JournalShare this articleAbstractMotivated by real-world situations found in high energy particle physics, we consider a generalization of the likelihood-ratio estimation task to a quasiprobabilistic setting where probability densities can be negative, and to importance sampling where the importance weights can be negative. The presence of negative densities and negative weights, pose an array of challenges to traditional neural likelihood ratio (LR) estimation methods. We address these challenges by introducing a novel loss function. In addition, we introduce a new model architecture based on the decomposition of a LR using signed mixture models, providing a second strategy for overcoming these challenges. Finally, we demonstrate our approach on a pedagogical example and a real-world example from particle physics.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a LHC
|e LHC: ATLAS
|1 EXP:(DE-588)4398783-7
|0 EXP:(DE-H253)LHC-Exp-ATLAS-20150101
|5 EXP:(DE-H253)LHC-Exp-ATLAS-20150101
|x 0
700 1 _ |a Jiggins, Stephen
|0 P:(DE-H253)PIP1094134
|b 1
|e Corresponding author
700 1 _ |a Katzy, Judith
|0 P:(DE-H253)PIP1002273
|b 2
|e Corresponding author
700 1 _ |a Cranmer, Kyle
|0 P:(DE-H253)PIP1114050
|b 3
|e Corresponding author
773 _ _ |a 10.1088/2632-2153/ae0def
|g Vol. 6, no. 4, p. 045023 -
|0 PERI:(DE-600)3017004-7
|n 4
|p 045023 -
|t Machine learning: science and technology
|v 6
|y 2025
|x 2632-2153
856 4 _ |u https://bib-pubdb1.desy.de/record/642844/files/Drnevich_2025_Mach._Learn.__Sci._Technol._6_045023.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/642844/files/Drnevich_2025_Mach._Learn.__Sci._Technol._6_045023.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1094134
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1002273
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1114050
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MACH LEARN-SCI TECHN : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:02:38Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:02:38Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:02:38Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-08-08T17:02:38Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MACH LEARN-SCI TECHN : 2022
|d 2025-01-01
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-01
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-01
920 1 _ |0 I:(DE-H253)ATLAS-20120731
|k ATLAS
|l LHC/ATLAS Experiment
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-H253)ATLAS-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21