001     642737
005     20260112082302.0
024 7 _ |a 10.1038/s41598-025-24614-3
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-05586
|2 datacite_doi
037 _ _ |a PUBDB-2025-05586
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Goullieux, Mathilde
|0 P:(DE-H253)PIP1113150
|b 0
|u desy
245 _ _ |a Hybrid quantum/classical docking of covalent and non-covalent ligands with Attracting Cavities
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767972375_4095511
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ligand–protein docking aims to predict how a ligand binds to a biological macromolecule and is a fundamental technique in structure-based computer-aided drug design. However, accurately modeling covalent binding, metal coordination, and polarization effects remains challenging for classical docking algorithms. Here, we present an extension of our Attracting Cavities docking algorithm that enables hybrid quantum mechanical/molecular mechanical (QM/MM) calculations at various levels of theory. To evaluate its performance, we benchmarked the method on three diverse datasets covering non-covalent drug–target complexes, covalent complexes, and hemoprotein complexes, using both semi-empirical and density functional theory approaches. The results demonstrate that QM/MM docking is especially advantageous for metal-binding complexes, where the fast semi-empirical PM7 method yields a significant improvement over classical docking. When describing the active site residues at the density functional theory level, dispersion corrections are crucial for meaningful energies. Overall, the QM/MM method outperforms the classical approach for metalloproteins, performs comparably for covalent complexes, and shows slightly lower success rates for non-covalent complexes.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Zoete, Vincent
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Röhrig, Ute F.
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
773 _ _ |a 10.1038/s41598-025-24614-3
|g Vol. 15, no. 1, p. 42271
|0 PERI:(DE-600)2615211-3
|n 1
|p 42271
|t Scientific reports
|v 15
|y 2025
|x 2045-2322
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/642737/files/s41598-025-24614-3.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/642737/files/s41598-025-24614-3.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:642737
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1113150
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 0
|6 P:(DE-H253)PIP1113150
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 1 _ |0 I:(DE-H253)CFEL-DESYT-20160930
|k CFEL-DESYT
|l FS-CFEL-3
|x 0
920 1 _ |0 I:(DE-H253)FS-CFEL-3-20120731
|k FS-CFEL-3
|l CFEL-Theory
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CFEL-DESYT-20160930
980 _ _ |a I:(DE-H253)FS-CFEL-3-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21